Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Ta có:
$7^4\equiv 1\pmod 5$
$\Rightarrow 7^{4n}\equiv 1^n\equiv 1\pmod 5$
$\Rightarrow 7^{4n}-1\equiv 0\pmod 5$
Hay $7^{4n}-1\vdots 5$
b.
$2^4\equiv 1\pmod 5$
$\Rightarrow 2^{4n+1}=2.2^{4n}\equiv 2.1^n\equiv 2\pmod 5$
$\Rightarrow 2^{4n+1}+3\equiv 2+3\equiv 5\equiv 0\pmod 5$
$\Rightarrow 2^{4n+1}+3\vdots 5$
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!