K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) Vì \(\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{\dfrac{đối}{huyền}}{\dfrac{kề}{huyền}}=\dfrac{đối}{kề}\)

nên \(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}\)

2) Vì \(\dfrac{\cos\alpha}{\sin\alpha}=\dfrac{\dfrac{kề}{huyền}}{\dfrac{đối}{huyền}}=\dfrac{kề}{đối}\)

nên \(\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}\)

21 tháng 8 2018

bài 1 : ta có : \(sin^2x+cos^2x=1\Leftrightarrow cos^2x=1-sin^2x=1-\left(0,6\right)^2=\dfrac{16}{25}\)

\(\Rightarrow cosa=\pm\dfrac{4}{5}\)

\(\Rightarrow tanx=\dfrac{sinx}{cosx}=\pm\dfrac{3}{4}\) \(\Rightarrow cotx=\dfrac{1}{tanx}=\pm\dfrac{4}{3}\)

bài 2)

ý 1 : a) ta có : \(\dfrac{1}{cos^2a}=\dfrac{sin^2a+cos^2a}{cos^2a}=tan^2a+1\left(đpcm\right)\)

b) ta có : \(\dfrac{1}{sin^2a}=\dfrac{sin^2a+cos^2a}{sin^2a}=1+cot^2a\left(đpcm\right)\)

c) \(cos^4a-sin^4a=\left(sin^2a+cos^2a\right)\left(cos^2a-sin^2a\right)\)

\(=cos^2a-sin^2a=2cos^2a-cos^2a-sin^2a=2cos^2a-1\left(đpcm\right)\)

ý 2 :

ta có : \(tana=2\Rightarrow cota=\dfrac{1}{2}\)

ta có : \(tan^2a+1=\dfrac{1}{cos^2a}\Leftrightarrow cos^2a=\dfrac{1}{tan^2a+1}=\dfrac{1}{5}\)

\(\Rightarrow cosa=\pm\dfrac{1}{\sqrt{5}}\Rightarrow sin^2a=1-cos^2a=\dfrac{4}{5}\) \(\Rightarrow sina=\pm\dfrac{2}{\sqrt{5}}\)

vậy ............................................................................

bài 3 bạn tự luyện tập như bài 2 cho quen nha :)

6 tháng 10 2021

Ko biết làm

Bài 1: 

\(\cos\alpha=\dfrac{4}{5}\)

\(\tan\alpha=\dfrac{3}{4}\)

\(\cot\alpha=\dfrac{4}{3}\)

12 tháng 7 2018

Bước đến nhà em bóng xế tà

Đứng chờ năm phút bố em ra

Lơ thơ phía trước vài con chó

Lác đác đằng sau chiếc chổi chà

Sợ quá anh chuồn quên đôi dép

Bố nàng ngoác mỏ đứng chửi cha

Phen này nhất quyết thuê cây kiếm

Trở về chém ổng đứt làm ba



thấy hay thì

NV
16 tháng 9 2019

\(cosa.sina=\frac{1}{5}\Rightarrow\frac{cosa.sina}{sin^2a}=\frac{1}{5sin^2a}=\frac{sin^2a+cos^2a}{5sin^2a}\)

\(\Rightarrow\frac{cosa}{sina}=\frac{1}{5}+\frac{1}{5}.\frac{cos^2a}{sin^2a}\)

\(\Rightarrow cota=\frac{1}{5}+\frac{1}{5}cot^2a\)

\(\Rightarrow cot^2a-5cota+1=0\)

\(\Rightarrow cota=\frac{5\pm\sqrt{21}}{2}\)

NV
16 tháng 9 2019

Câu 2:

\(\frac{cosa}{1-sina}=\frac{cosa\left(1+sina\right)}{\left(1-sina\right)\left(1+sina\right)}=\frac{cosa\left(1+sina\right)}{1-sin^2a}=\frac{cosa\left(1+sina\right)}{cos^2a}=\frac{1+sina}{cosa}\)

b/

\(\frac{\left(sina+cosa\right)^2-\left(sina-cosa\right)^2}{sina.cosa}\)

\(=\frac{sin^2a+cos^2a+2sina.cosa-\left(sin^2a+cos^2a-2sina.cosa\right)}{sina.cosa}\)

\(=\frac{4sina.cosa}{sina.cosa}\)

\(=4\)

a) \(\tan^2\alpha+1=\frac{\sin^2\alpha}{\cos^2\alpha}+1=\frac{\sin^2\alpha+\cos^2\alpha}{\cos^2\alpha}=\frac{1}{\cos^2\alpha}\)

b) \(\cot^2\alpha+1=\frac{\cos^2\alpha}{\sin^2\alpha}+1=\frac{\cos^2\alpha+\sin^2\alpha}{\sin^2\alpha}=\frac{1}{\sin^2\alpha}\)

c) \(\cos^4\alpha-\sin^4\alpha=\left(\cos^2\alpha+\sin^2\alpha\right)\left(\cos^2\alpha-\sin^2\alpha\right)=\cos^2\alpha-\sin^2\alpha\)

\(=2\cos^2\alpha-\left(\sin^2\alpha+\cos^2\alpha\right)=2\cos^2-1\)

18 tháng 8 2019

Chia cả tử và mẫu cho \(\sin a\)ta được

\(\frac{\sin a-\cos a}{\sin a+\cos a}=\frac{\frac{\sin a}{\sin a}-\frac{\cos a}{\sin a}}{\frac{\sin a}{\sin a}+\frac{\cos a}{\sin a}}=\frac{1-\cot a}{1+\cot a}=\frac{1-0,7456}{1+0,7456}=\frac{\frac{159}{625}}{\frac{1091}{625}}=\frac{159}{1091}\)

1 tháng 11 2016

Đề sai rồi b