Chứng minh rằng:
1)  A=x^2 + 2x + 2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

Trả lời:

1) \(A=x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\ge1>0\forall x\) (đpcm)

2, \(B=-4x^2+4x-2=-\left(4x^2-4x+2\right)=-\left[\left(4x^2-4x+1\right)+1\right]\)

\(=-\left[\left(2x-1\right)^2+1\right]=-\left(2x-1\right)^2-1\le-1< 0\forall x\) (đpcm)

a: (x-2)(x+3)>0

TH1: \(\begin{cases}x-2>0\\ x+3>0\end{cases}\Rightarrow\begin{cases}x>2\\ x>-3\end{cases}\Rightarrow x>2\)

TH2: \(\begin{cases}x-2<0\\ x+3<0\end{cases}\Rightarrow\begin{cases}x<2\\ x<-3\end{cases}\)

=>x<-3

b: (2x-1)(-x+1)>0

=>(2x-1)(x-1)<0

TH1: \(\begin{cases}2x-1>0\\ x-1<0\end{cases}\Longrightarrow\begin{cases}x>\frac12\\ x<1\end{cases}\)

=>\(\frac12

TH2: \(\begin{cases}2x-1<0\\ x-1>0\end{cases}\Rightarrow\begin{cases}x<\frac12\\ x>1\end{cases}\)

=>x∈∅

c: (x+1)(3x-6)<0

=>3(x+1)(x-2)<0

=>(x+1)(x-2)<0

TH1: \(\begin{cases}x+1>0\\ x-2<0\end{cases}\Rightarrow\begin{cases}x>-1\\ x<2\end{cases}\Rightarrow-1

TH2: \(\begin{cases}x+1<0\\ x-2>0\end{cases}\Rightarrow\begin{cases}x<-1\\ x>2\end{cases}\)

=>x∈∅

MT
22 tháng 8
L Nguyễn Lê Phước Thịnh dùng chat


5 tháng 9

a)1/4 - 5/6 + 7/12

= -7/12 + 7/12

= 0


S
5 tháng 9

\(a.\frac14-\frac56+\frac{7}{12}\)

\(=\frac{3}{12}-\frac{10}{12}+\frac{7}{12}\)

\(=\frac{0}{12}=0\)

\(b.6\frac27\cdot\frac15-1\frac27\cdot\frac15+\frac45\)

\(=\frac{44}{7}\cdot\frac15-\frac97\cdot\frac15+\frac45\)

\(=\frac15\cdot\left(\frac{44}{7}-\frac97\right)+\frac45\)

\(=\frac15\cdot\frac{35}{7}+\frac45\)

\(=\frac15\cdot5+\frac45\)

\(=1+\frac45=\frac95\)

16 tháng 12 2017

a,f(1/2)=5-2*(1/2)=5-1=4

   f(3)=5-2x3=5-6=-1

b,Với y=5 thì 5-2x=5

                    2x=5-5

                    2x=0

                    x=0:2=0

                   Vậy x=0

 Với y=-1 thì 5-2x=-1

                   2x=5-(-1)

                   2x=5+1

                   2x=6

                   x=6:2=3 

              Vậy x=3

16 tháng 12 2017

a) Thay f(1/2) vào hàm số ta có :

y=f(1/2)=5-2.(1/2)=4

Thay f(3) vào hàm số ta có :

y=f(3)=5-2.3=-1

b) y=5-2x <=> 5-2x=5

2x=5-5

2x=0

=> x=0

<=> 5-2x=-1

2x=5-(-1)

2x=6

=> x=3

25 tháng 12 2018

a, f (1/2) = 5 - 2.1/2 = 4

    f (3) = 5 - 2.3 = -1

b, y = 5 <=> 5 - 2x = 5

             <=>  x  = 0

    y = -1 <=> 5 - 2x = -1

               <=> x = 3

_Hok tốt_

  ( sai thì thôi nha )

8 tháng 6 2015

Trả lời:

  (1/a + 1/b + 1/c)^2 = 1/a^2 + 1/b^2 + 1/c^2 + 2/(ab) + 2/(bc) + 2/(ca) 
= 1/a^2 + 1/b^2 + 1/c^2 + 2(c+a+b)/(abc) 
= 1/a^2 + 1/b^2 + 1/c^2 (vì a+b+c=0) 

Suy ra √(1/a^2 + 1/b^2 + 1/c^2) = |1/a + 1/b + 1/c| là số hữu tỉ với a,b,c hữu tỉ khác 0.

8 tháng 6 2015

 Trên https://vn.answers.yahoo.com/question/index?qid=20130331041808AA5SbB4 bạn có thể tham khảo

14 tháng 9

a) EA = EH

Xét ΔABE và ΔHBE vuông tại A và H:

  • Góc ABE chung
  • Góc BAE = góc EBC (BE là phân giác)
    ⇒ ΔABE ∽ ΔHBE
    ⇒ EA = EH

b) EK = EC

Xét ΔAEC và ΔHEK vuông tại A và H:

  • Góc tại E chung
  • EA = EH (câu a)
    ⇒ ΔAEC ∽ ΔHEK
    ⇒ EK = EC

c) BE ⊥ KC

Vì EK = EC ⇒ ΔECK cân tại E
⇒ BE vừa là phân giác vừa là đường cao
⇒ BE ⊥ KC

5 tháng 6 2016

=> 4X + 10 = 110

=> 4X = 110 - 10

=> 4X = 100

=> X = 100 : 4

=> X = 25

5 tháng 6 2016

 (X+1) + (X + 2) + (X + 3) + (X + 4) = 110

<=>(x+x+x+x)+(1+2+3+4)=110

<=>4x+10=110

<=>4x=100

<=>x=25

3 tháng 3 2018

câu này mình vừa làm ở bạn Khang Phạm Duy , HÂN nhé

tham khảo .mình giải rất chi tiết 

3 tháng 3 2018

D E F N M I

a) Xét \(\Delta DEM\)và \(\Delta DFN\)

\(\widehat{D}\)chung

DM=DN

DF=DE

\(\Rightarrow\Delta DEM=\Delta DFN\left(c.g.c\right)\)

\(\Rightarrow\widehat{DEM}=\widehat{DFN}\)(2 góc tương ứng)

b,c dễ bn tự làm

18 tháng 6 2017

Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow ad+cd< bc+dc\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) (1)

\(ad< bc\)

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (2)

Từ (1), (2) \(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\left(đpcm\right)\)

18 tháng 6 2017

Ta có :

\(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow ad+ab< bc+ab\Rightarrow a\left(d+b\right)< b\left(c+a\right)\)

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(1\right)\)

Lại có :

\(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\rightarrowđpcm\)