K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2018

Nghe vô lí ghê!

4 tháng 12 2018

ta có:2^2=2+2

3^2=3+3+3

x^2=x*x*x*...*x(x lần)

theo bảng đạo hàm của hàm số cỏ bản:

x^2=2*x^(2-1)=2x

x+1*x^(1-1)

vậy 2x=1+1+1+...+1(x lần)=>2x=x

mà x=1=> 2=1

29 tháng 5 2017

mới học lớp 6 thui

29 tháng 5 2017

đây là lớp mấy vậy tui năm nay mới lên lớp 6 thui

24 tháng 5 2016

Lấy 12 số này chia cho 11 ta được 10 số dư trong các số 0;1;2;3;4;5;6;7;8;9. Theo nguyên tắc Direchlet thì phải có ít nhất có hai số có cùng số dư. Nên hiệu hai số này chia hết 12. Khi đó chúng có 2 cs tận cùng giống nhau

23 tháng 12 2021

Hơi sai sai nhỉ

 

 

23 tháng 2 2019

Ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

<=> \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

<=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{ac}+\frac{2}{bc}=4\)

<=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2c}{abc}+\frac{2b}{abc}+\frac{2a}{abc}=4\)

<=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2a+2b+2c}{abc}=4\)

<=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2\left(a+b+c\right)}{abc}=4\)

<=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2abc}{abc}=4\)

<=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{b^2}+2=4\)

<=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=4-2=2\)

23 tháng 2 2019

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=2^2\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=2^2\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=2^2\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{abc}{abc}=2^2\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\)

                            đpcm

22 tháng 9 2019

Em tham khảo cách làm tương tự như link bên dưới:

Câu hỏi của đàm anh quân lê - Toán lớp 8 - Học toán với OnlineMath