K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

Mạn phép sửa đề \(x^3\left(x^2-7\right)^2-36x\)

\(x\left(x^2\left(x^2-7\right)^2-36\right)=x\left(\left(x^2-7x\right)^2-6^2\right)=x\left(x^3-7x+6\right)\left(x^3-7x-6\right)=x\left(\left(x^3+1\right)-\left(7x+7\right)\right)\left(\left(x^3-x\right)-\left(6x-6\right)\right)=x\left(\left(x+1\right)\left(x^2-x+1\right)-7\left(x+1\right)\right)\left(x\left(x+1\right)\left(x-1\right)-6\left(x-1\right)\right)=x\left(x+1\right)\left(x^2-x-6\right)\left(x-1\right)\left(x^2+x-6\right)=x\left(x+1\right)\left(x-3\right)\left(x+2\right)\left(x-1\right)\left(x-2\right)\left(x+3\right)\)chia ht 7

26 tháng 2 2020

Híc :< mình gõ nhầm đề đấy ạ. Cảm ơn cậu!

14 tháng 8 2020

Gọi \(P\left(x\right)=ax^4+bx^3+cx^2+dx+e\)

Theo bài ta có : \(P\left(x\right)⋮7\Rightarrow\hept{\begin{cases}P\left(0\right)⋮7\\P\left(1\right)⋮7\\P\left(-1\right)⋮7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}e⋮7\\a+b+c+d+e⋮7\\a-b+c-d+e⋮7\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a+b+c+d⋮7\\a-b+c-d⋮7\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a+c⋮7\\b+d⋮7\end{cases}}\)

Mặt khác ta có : \(P\left(2\right)=16a+8b+4c+d+e⋮7\)

\(\Leftrightarrow2a+b+4c+d⋮7\)

\(\Leftrightarrow2\left(a+c\right)+b+d+2c⋮7\)

\(\Leftrightarrow2c⋮7\Leftrightarrow c⋮7\Leftrightarrow a⋮7\)

Chứng minh tương tự thì ta có \(a,b,c,d,e⋮7\). Ta có đpcm.

11 tháng 11 2021

a: \(=\left(4n-7-5\right)\left(4n-7+5\right)\)

\(=\left(4n-12\right)\left(4n-2\right)\)

\(=8\left(n-3\right)\left(2n-1\right)⋮8\)

\(\Leftrightarrow\left(3n+7-2n-3\right)\left(3n+7+2n+3\right)\)

\(=\left(5n+10\right)\left(n+4\right)⋮5\)

1 tháng 6 2018

b) Phân tích ra thừa số : 5040 = 24 . 32 . 5 . 7

Phân tích : A = n . [ n2 . ( n2 - 7 )2 - 36 ] = n . [ ( n3 - 7n )2 - 62 ]

= n . ( n3 - 7n - 6 ) . ( n3 - 7n + 6 )

Ta lại có : n3 - 7n - 6 = ( n + 1 ) ( n + 2 ) ( n - 3 )

 n3 - 7n + 6 = ( n - 1 ) ( n - 2 ) ( n + 3 )

Do đó : A = ( n - 3 ) ( n - 2 ) ( n - 1 ) n ( n + 1 ) ( n + 2 ) ( n + 3 )

Ta thấy A là tích của 7 số nguyên liên tiếp nên :

- tồn tại 1 bội số của 5 ( nên A chia hết cho 5 )

- tồn tại 1 bội số của 7 ( nên A chia hết cho 7 )

- tồn tại 2 bội số của 3 ( nên A chia hết cho 9 )

- tồn tại 3 bội số của 2, trong đó có 1 bội số của 4 ( nên A chia hết cho 16 )

A chia hết cho các số 5,7,9,16 đôi một nguyên tố cùng nhau nên A chia hết cho 5.7.9.16 = 5040

26 tháng 7 2018

\(49-\left(3n-7\right)^2\)

\(=49-\left(9n^2-42n+49\right)\)

\(=-9n^2+42n\)

\(=-3\left(3n^2-14n\right)\)\(⋮\)\(3\)

1 tháng 10 2016

Đề sai rồi bạn

Nếu ta thử n=0 thôi ta sẽ có:

 \(\left(7n-2\right)^2-\left(2n-7\right)^2=\left(-2\right)^2-\left(-7\right)^2=4-49=-45\) không chia hết cho 7 :(

30 tháng 10 2021

em chịu

22 tháng 12 2017

\(n^7-n=n\left(n^6-1\right)=n\left(n^2-1\right)\left(n^2+n+1\right)\left(n^2-n+1\right)\)

Nếu n = 7k ( k thuộc Z ) thì n chia hết cho 7 

Nếu n = 7k + 1 ( k thuộc Z ) thì \(n^2-1=49k^2+14k⋮7\) 

Nếu n = 7k + 2 ( k thuộc Z ) thì \(n^2+n+1=49k^2+35k+7⋮7\)

Nếu n = 7k + 3 ( k thuộc Z ) thì \(n^2-n+1=49k^2+35k+7⋮7̸\)

Trong trường hợp nào cũng có một thừa số chia hết cho 7 

Nên \(n^7-n⋮7\)với mọi số nguyên