K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2016

bạn cảm ơn ai vay có bn ấy có giup bn làm đau

26 tháng 11 2016

mk chua hok den nen ko co bit lam

2 tháng 1 2017

b1:

x-y=5->x=y+5

->x-3y/5-2y=y+5-3y/5-2y=5-2y5-2y=1

->đpcm

1 tháng 7 2020

Theo bđt cauchy schwarz dạng engel

\(x^2+y^2=\frac{x^2}{1}+\frac{y^2}{1}\ge\frac{\left(x+y\right)^2}{1+1}=\frac{1}{2}\left(đpcm\right)\)

Dấu = xảy ra \(< =>x=y=\frac{1}{2}\)

1 tháng 7 2020

Theo Bunhiacopski ta có:

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{1}{2}\)

Đẳng thức xảy ra tại x=y=1/2

Trình bày khác xíu :))

28 tháng 7 2017

\(x^2+y^2+1\ge xy+x+y\)

\(\Leftrightarrow2x^2+2y^2+2\ge2xy+2x+2y\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\ge0\)(đúng)

16 tháng 5 2017

không mất tính tổng quát giả sử x \(\le\)y

BĐT tương đương \(\frac{1}{1+x^2}-\frac{1}{1+xy}\ge\frac{1}{1+xy}-\frac{1}{1+y^2}\)

quy đồng và rút gọn ta được \(\frac{x}{\left(1+x^2\right)}\ge\frac{y}{1+y^2}\)

suy ra \(x\left(1+y^2\right)\ge y\left(1+x^2\right)\)

Phá ngoặc, chuyển vế, phân tích nhân tử ta được (y - x)(xy - 1) \(\ge\)0 (1)

vì x, y\(\ge\)1 và y \(\ge\)x nên (1) luôn đúng. (đpcm)

17 tháng 5 2017

Xét hiệu 2 vế + sử dụng gt xy>/1 

22 tháng 2 2018

vì x>y>0 nên \(x+y\ne0\).Theo tính chất cơ bản của phân thức,ta có :

\(\dfrac{x-y}{x+y}=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\dfrac{x^2-y^2}{x^2+2xy+y^2}\left(1\right)\)

Mặt khác,vì x,y>0 nên \(x^2+2xy+y^2>x^2+y^2\)

Vậy \(\dfrac{x^2-y^2}{x^2+2xy+y^2}< \dfrac{x^2-y^2}{x^2+y^2}\left(2\right)\) Từ \(\left(1\right),\left(2\right)\) ta suy ra : \(\dfrac{x-y}{x+y}< \dfrac{x^2-y^2}{x^2+y^2}\)

22 tháng 2 2018

chết, mik nhầm

13 tháng 1 2017

Do x>y>0 nên x+y\(\ne0\)

Ta có \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+2xy+y^2}\) (1)

Mặt khác ,do x,y>0 nên \(x^2+2xy+y^2>x^2+y^2\)

Vậy: \(\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+y^2}\) (2)

Từ (1),(2) ta suy ra : \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)