Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy trong 3 số thực dương a;b;c luôn tồn tại hai số cùng lớn hơn hay nhỏ hơn hoặc bằng 1.Giả sử 2 số đó là b,c
Khi đó \(\left(b-1\right)\left(c-1\right)\ge0\)
\(\Leftrightarrow bc\ge b+c-1\ge0\)\(\Rightarrow2abc\ge2ab+2ac-2a\)
Do đó \(a^2+b^2+c^2+2abc+1\ge a^2+b^2+c^2+2ab+2ac-2a+1\)
Nên bây giờ ta chứng minh :\(a^2+b^2+c^2+2ab+2ac-2a+1\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-c\right)^2\ge0\)(luôn đúng)
Dấu bằng xảy ra khi a=b=c=1
a) \(x^2-6x+10>x^2-6x+9=\left(x-3\right)^2>0\\ \Rightarrow x^2-6x+10>0\)
b)\(4x^2-20x+27>4x^2-20x+25=\left(2x+5\right)^2\ge0\\ \Rightarrow4x^2-20x+27>0\)
c)\(x^2+x+1>x^2\ge0\)
d)\(x^2+4x+y^2+6y+15=\left(x+2\right)^2+\left(y+3\right)^2+2\\ \left(x+2\right)^2\ge0;\left(y+3\right)^2\ge0;\\ \Rightarrow x^2+4x+y^2+6y+15\ge2>0\)
Lớp 6 nên chưa pít nhìu :v
\(x^2-12x+37\)
\(=x^2-6x-6x+36+1\)
\(=x\left(x-6\right)-6\left(x-6\right)+1\)
\(=\left(x-6\right)\left(x-6\right)+1\)
\(=\left(x-6\right)^2+1\)
\(\left(x-6\right)^2\ge0\)
\(\Rightarrow\left(x-6\right)^2+1>0\rightarrowđpcm\)