K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2019

Bất đẳng thức cần chứng minh

\(\Leftrightarrow3x +\frac{81}{\left(x+3\right)^3}\ge3\)

\(\Leftrightarrow\left(x+3\right)+\left(x+3\right)+\left(x+3\right)+\frac{81}{\left(x+3\right)^3}\ge12\)

Mà theo bất đẳng thức Cosi cho 4 số dương ta có:

\(\left(x+3\right)+\left(x+3\right)+\left(x+3\right)+\frac{81}{\left(x+3\right)^3}\ge4\sqrt[4]{\frac{\left(x+3\right)\left(x+3\right)\left(x+3\right)81}{\left(x+3\right)^3}}=12\left(ĐPCM\right)\)

Dấu = xảy ra kvck \(\hept{\begin{cases}x+3=\frac{81}{\left(x+3\right)^3}\\x\ge0\end{cases}}\Leftrightarrow x=0\)

22 tháng 6 2019

\(x+\frac{1}{x}\ge2\Leftrightarrow\frac{x^2+1}{x}\ge2\)

\(\Leftrightarrow x^2+1\ge2x\left(x\ge0\right)\)

\(\Leftrightarrow x^2-2x+1\ge0\)

\(\Leftrightarrow\left(x-1\right)^2\ge0\left(\text{luôn đúng}\right)\)

Vì BĐT cuối đúng nên BĐT đầu đúng (với x >= 0)

22 tháng 6 2019

\(x+\frac{1}{x}\ge2\Leftrightarrow x>0\) vì x ở mẫu thức nên dấu =  không xảy ra nha bạn, lúc này mình ko để ý 

còn câu tiếp theo đề ntn mới đúng, cm tương tự câu trước \(\frac{x^2+2x+1}{x}\ge4\text{ với }x>0\)

17 tháng 1 2016

bài này nhìn như vậy thì khó làm 
nhưng bạn  đặt ẩn phụ thì sẽ hơn rất nhiều
Đặt : x-1=a ; y=b
sau đó dùng cô si nhé 
k thì dùng tương đương

17 tháng 1 2016

Thì bạn làm chi mình coi với

 

3 tháng 6 2019

Em thử ạ!Em không chắc đâu.Hơi quá sức em rồi

Ta có: \(VT=\Sigma\frac{x^3}{z+y+yz+1}=\Sigma\frac{x^3}{z+y+\frac{1}{x}+1}\)

\(=\Sigma\frac{x^4}{xz+xy+1+x}=\frac{x^4}{xy+xz+x+1}+\frac{y^4}{yz+xy+y+1}+\frac{z^4}{zx+yz+z+1}\)

Áp dụng BĐT Cauchy-Schwarz dạng Engel,suy ra:

\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{\left(x+y+z\right)+2\left(xy+yz+zx\right)+3}\)

\(\ge\frac{\left(\frac{1}{3}\left(x+y+z\right)^2\right)^2}{\left(x+y+z\right)+\frac{2}{3}\left(x+y+z\right)^2+3}\) (áp dụng BĐT \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3};ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\))

Đặt \(t=x+y+z\ge3\sqrt{xyz}=3\) Dấu "=" xảy ra khi x = y = z

Ta cần chứng minh: \(\frac{\frac{t^4}{9}}{\frac{2}{3}t^2+t+3}\ge\frac{3}{4}\Leftrightarrow\frac{t^4}{9\left(\frac{2}{3}t^2+t+3\right)}=\frac{t^4}{6t^2+9t+27}\ge\frac{3}{4}\)(\(t\ge3\))

Thật vậy,BĐT tương đương với: \(4t^4\ge18t^2+27t+81\)

\(\Leftrightarrow3t^4-18t^2-27t+t^4-81\ge0\)

Ta có: \(VT\ge3t^4-18t^2-27t+3^4-81\)

\(=3t^4-18t^2-27t\).Cần chứng minh\(3t^4-18t^2-27t\ge0\Leftrightarrow3t^4\ge18t^2+27t\)

Thật vậy,chia hai vế cho \(t\ge3\),ta cần chứng minh \(3t^3\ge18t+27\Leftrightarrow3t^3-18t-27\ge0\)

\(\Leftrightarrow3\left(t^3-27\right)-18\left(t-3\right)\ge0\)

\(\Leftrightarrow\left(t-3\right)\left(3t^2+9t+27\right)-18\left(t-3\right)\ge0\)

\(\Leftrightarrow\left(t-3\right)\left(3t^2+9t+9\right)\ge0\)

BĐT hiển nhiên đúng,do \(t\ge3\) và \(3t^2+9t+9=3\left(t+\frac{3}{2}\right)^2+\frac{9}{4}\ge\frac{9}{4}>0\)

Dấu "=" xảy ra khi t = 3 tức là \(\hept{\begin{cases}x=y=z\\xyz=1\end{cases}}\Leftrightarrow x=y=z=1\)

Chứng minh hoàn tất

3 tháng 6 2019

Em sửa chút cho bài làm ngắn gọn hơn.

Khúc chứng minh: \(4t^4\ge18t^2+27t+81\)

\(\Leftrightarrow4t^4-18t^2-27t-81\ge0\)

\(\Leftrightarrow\left(t-3\right)\left(4t^3+12t^2+18t+27\right)\ge0\)

BĐT hiển nhiên đúng do \(t\ge3\Rightarrow\hept{\begin{cases}t-3\ge0\\4t^3+12t^2+18t+27>0\end{cases}}\)

Còn khúc sau y chang :P Lúc làm rối quá nên không nghĩ ra ạ!