Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng: Số 11...1(n chữ số 1)-10n chia hết cho 9
Các bạn giúp mình với mình cảm ơn rất nhiều
a.1111111...1 = 10^(n-1) + 10^(n-2) +....1 (gồm n số 1)
10^n chia 9 dư 1 => 10^(n-1) = 9.k(n-1) + 1
10^(n-1) chia 9 dư 1 => 10^(n-2) = 9.k(n-2) +1
.....
10 chia 9 dư 1 => 10 = 9.k1 + 1 (ở đây k1=3)
=>11111....1 = 9.(k1 + k2 +... + k(n-1)) +(1+1+...+1) (gồm n số 1)
= 9.A + n
=>8n + 11111...1= 9A +9n chia hết cho 9
b.11111111....1 (gồm 27 số 1)
= 1111...100.....0 + 11111...10000...0 + 1111...1
-------------------------- ----------------------- -----------
9chữsố1;18chữsố 0 9chữsô1;9chữsố0 9chữsô1
=111111111 x (10^18 + 10^9 +1)
ta có: 111111111 chia hết cho 9 (tổng các chữ số =9)
10^18 chia 3 dư 1
10^9 chia 3 sư 1
=> 10^18 + 10^9 +1 chia hết cho 3
vậy 1111.....1111 chia hết cho 27 (gồm 27 số 1)
Ta Có:
Cho biểu thức trên là B
\(b\)\(=\)\(10\)\(^n\)+ \(72n\)\(-1\)
\(=10\)\(^n\)\(+72n\)\(-1\)
\(=10^{n^{ }}\)\(-1\)(có n\(-1chữ\) số 9)=9\(x\)(11....1)(có n chữ số 1)
B= 10n-1+72n=9x(11....1)+72n
=>B:9=11....1+8n=11....1-n+9n
Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n
=>11....1-n chia hết cho 9
=>B:9=11....1-n+9n chia hết cho 9
Vậy B chia hết cho 81
Ta Có:
Cho biểu thức trên là B
bb==1010nn+ 72n72n−1−1
=10=10nn+72n+72n−1−1
=10n=10n−1−1(có n−1chữ−1chữ số 9)=9xx(11....1)(có n chữ số 1)
B= 10n-1+72n=9x(11....1)+72n
=>B:9=11....1+8n=11....1-n+9n
Ta Thấy:11....1 có n chữ số1 có tổng các chữ số là n
=>11....1-n chia hết cho 9
=>B:9=11....1-n+9n chia hết cho 9
Vậy B chia hết cho 81
a) 10^n-1=100...0(n chữ số 0)-1=999...9(n chữ số 9) chia hết cho 9
b)10^n+8=100...0(n chữ số 0)+8=100....08(n-1 chữ số 0) chia hết cho 9
Ta có:
10n có tổng các chữ số là 1
=>10n chia cho 9 dư 1
=>10n=9k+1
=>10n-1=9k+1-1=9k chia hết cho 9
b.
10n+8=9k+1+8=9k+9=9(k+1) chia hết cho 9
a) Ta có: 10n-1= 100000000000000........0 -1
n chữ số 0
=> 10n-1= 99999999.......999
n chữ số 9
Lại có tổng của 9999999.......9999= 9.n
Vì 9 chia hết cho 9 => 99999........999 chia hết cho 9 => 10n-1 chia hết cho 9 ( ĐPCM )
b ) - Nếu n = 0 thì 10n+8=1+8=9 chia hết cho 9.
- Nếu n ≥ 1 thì 10n+8=100...0+8 (n chữ số 0) =100...08 (n - 1 chữ số 0)
có tổng các chữ số là 1 + 0 + 0 + ... + 8 = 9 chia hết cho 9 nên số đó chia hết cho 9.
=> ĐPCM