Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left|x+y\right|\ge0\)
\(\left|x\right|+\left|y\right|\ge0\)\(\Rightarrow\left|x+y\right|=\left|x\right|+\left|y\right|\)
Ta có:
\(VT^2\ge VP^2\)
\(\left(\left|x-y\right|\right)^2\ge\left(\left|x\right|-\left|y\right|\right)^2\)
\(x^2+y^2-2xy\ge x^2+y^2-2\left|xy\right|\)
\(-2xy\ge-2\left|xy\right|\)
\(2xy\le2\left|xy\right|\)
Điều này đúng nên BĐT đúng
Ta có :
\(P=2x\left(x+y-1\right)+y^2+1\)
\(\Rightarrow P=2x^2+2xy-2x+y^2+1\)
\(\Rightarrow P=\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)\)
\(\Rightarrow P=\left(x+y\right)^2+\left(x-1\right)^2\ge0\forall xy\)
\(\RightarrowĐpcm\)
Công thức đây :
\(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(a-b\right)^2=a^2-2ab+b^2\)