\(\left(2x+1\right)\sqrt{x^2-x+1}>\left(2x-1\rig...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 11 2017

Lời giải:

\((2x+1)\sqrt{x^2-x+1}>(2x-1)\sqrt{x^2+x+1}\)

\(\Leftrightarrow (2x+1)\sqrt{4x^2-4x+4}> (2x-1)\sqrt{4x^2+4x+4}\)

\(\Leftrightarrow (2x+1)\sqrt{(2x-1)^2+3}>(2x-1)\sqrt{(2x+1)^2+3}\) (1)

Xét các TH sau:

TH1: \(\left\{\begin{matrix} 2x-1>0\\ 2x+1>0\end{matrix}\right.\Rightarrow x>0\)

Bình phương hai vế:

\((1)\Leftrightarrow (2x+1)^2[(2x-1)^2+3]\geq (2x-1)^2[(2x+1)^2+3]\)

\(\Leftrightarrow 3(2x+1)^2\geq 3(2x-1)^2\)

\(\Leftrightarrow (2x+1)^2\geq (2x-1)^2\)

\(\Leftrightarrow 8x\geq 0\) (đúng)

TH2: \(\left\{\begin{matrix} 2x-1<0\\ 2x+1<0\end{matrix}\right.\Rightarrow x<0\)

\((1)\Leftrightarrow -(2x+1)\sqrt{((x+1)^2+3}< -(2x-1)\sqrt{(2x+1)^2+3}\)

(nhân hai vế với 1 số âm thì phải đổi dấu)

Bây giờ 2 vế đều dương rồi. Bình phương hai vế:

\(\Leftrightarrow (2x+1)^2[(2x-1)^2+3]\geq (2x-1)^2[(2x+1)^2+3]\)

\(\Leftrightarrow 3(2x+1)^2< 3(2x-1)^2\)

\(\Leftrightarrow x< 0\) (đúng)

TH3: \(\left\{\begin{matrix} 2x+1>0\\ 2x-1<0\end{matrix}\right.\)

Khi đó, vế trái lớn hơn 0, vế phải nhỏ hơn 0 nên ta có đpcm.

TH4: \(\left\{\begin{matrix} 2x+1<0\\ 2x-1>0\end{matrix}\right.\) (TH này không thể xảy ra vì \(2x+1> 2x-1\)

TH5: \(x=-\frac{1}{2}\Rightarrow \text{VT}=0; \text{VP}< 0\Rightarrow \text{VT}> \text{VP}\)

TH6: \(x=\frac{1}{2}\Rightarrow \text{VT}>0; \text{VP}=0\Rightarrow \text{VT}>\text{VP}\)

Ta có đpcm.

29 tháng 5 2017

b/ Sửa đề chứng minh: \(\frac{5a-3b+2c}{a-b+c}>1\)

Theo đề bài ta có:

\(\hept{\begin{cases}f\left(-1\right)=a-b+c>0\left(1\right)\\f\left(-2\right)=4a-2b+c>0\left(2\right)\end{cases}}\)

Ta có: \(\frac{5a-3b+2c}{a-b+c}>1\)

\(\Leftrightarrow\frac{4a-2b+c}{a-b+c}>0\)

Mà theo (1) và (2) thì ta thấy cả tử và mẫu của biểu thức đều > 0 nên ta có ĐPCM

Y
21 tháng 6 2019

a) \(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow a^2+b^2\ge2ab\)

\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Rightarrow\sqrt{2\left(a^2+b^2\right)}\ge\sqrt{\left(a+b\right)^2}=\left|a+b\right|\)

Dấu "=" \(\Leftrightarrow a=b\)

bạn thử tải app này xem có đáp án không nhé <3 https://giaingay.com.vn/downapp.html