Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong một tam giác thì tổng các góc là 1800 :
+ + = 1800 => = -1800 – ( + )
và ( + ) là 2 góc bù nhau, do đó:
a) sinA = sin[1800 – ( + )] = sin (B + C)
b) cosA = cos[1800 – ( + )] = -cos (B + C)
a) Áp dụng hệ quả của định lí côsin trong tam giác ta có:
b) Theo định lí tổng ba góc của tam giác ta có:
A + B + C = 180º
⇒ sin A = sin [180º – (B – C)]= sin (B + C) = sinB.cos C + cosB. sinC (đpcm)
c) Theo định lí sin trong tam giác ABC, ta có:
\(sin^4x+cos^4x=sin^4x+cos^4x+2sin^2x.cos^2x-2sin^2x.cos^2x\)
\(=\left(sin^2x+cos^2x\right)^2-\frac{1}{2}\left(2sinx.cosx\right)^2\)
\(=1-\frac{1}{2}sin^22x\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=2\end{matrix}\right.\) \(\Rightarrow a+3b+c=?\)
\(\frac{sin\left(A-B\right)}{sinC}=\frac{sin\left(A-B\right).sinC}{sin^2C}=\frac{sin\left(A-B\right).sin\left(A+B\right)}{sin^2C}=\frac{-\frac{1}{2}\left(cos2A-cos2B\right)}{sin^2C}\)
\(=\frac{-\frac{1}{2}\left(1-2sin^2A-1+2sin^2B\right)}{sin^2C}=\frac{sin^2A-sin^2B}{sin^2C}=\frac{\left(\frac{a}{2R}\right)^2-\left(\frac{b}{2R}\right)^2}{\left(\frac{c}{2R}\right)^2}=\frac{a^2-b^2}{c^2}\)
Câu 3:
a/ Đề dị dị, là \(\frac{cosA+cosB}{sinB+sinC}\) hay \(\frac{cosB+cosC}{sinB+sinC}\) bạn?
b/ \(cos\left(B-C\right)-cos\left(B+C\right)=1+cosA\)
\(\Leftrightarrow cos\left(B-C\right)+cosA=1+cosA\)
\(\Leftrightarrow cos\left(B-C\right)=1\)
\(\Rightarrow B=C\Rightarrow\Delta ABC\) cân tại A
\(A+B+C=180^0\Rightarrow\frac{A+B}{2}+\frac{C}{2}=90^0\)
\(\Rightarrow sin\left(\frac{A+B}{2}\right)=cos\left(90^0-\frac{A+B}{2}\right)=cos\frac{C}{2}\)
\(cos\left(A+B\right)=-cos\left(180^0-\left(A+B\right)\right)=-cosC\)
\(cos\left(\frac{A+B}{2}\right)=sin\left(90-\frac{A+B}{2}\right)=sin\frac{C}{2}\)
\(sinA=sin\left(180^0-A\right)=sin\left(B+C\right)\)
\(sin\left(A+B\right)=sin\left(180^0-\left(A+B\right)\right)=sinC\)
\(cosA=-cos\left(180^0-A\right)=-cos\left(B+C\right)\)
A, B , C là ba góc của ΔABC nên ta có: A + B + C = 180º
a) sin A = sin (180º – A) = sin (B + C)
b) cos A = – cos (180º – A) = –cos (B + C)
1.
\(sinA+sinB-sinC=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-sin\left(A+B\right)\)
\(=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-2sin\dfrac{A+B}{2}.cos\dfrac{A+B}{2}\)
\(=2sin\dfrac{A+B}{2}.\left(cos\dfrac{A-B}{2}-cos\dfrac{A+B}{2}\right)\)
\(=2sin\dfrac{A+B}{2}.2sin\dfrac{A}{2}.sin\dfrac{B}{2}\)
\(=4sin\dfrac{A}{2}.sin\dfrac{B}{2}.cos\dfrac{C}{2}\)
Sao t lại đc như này v, ai check hộ phát
a: Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=>\(\widehat{A}=180^0-\widehat{B}-\widehat{C}\)
=>\(sinA=sin\left(180-B-C\right)\)
=>\(sinA=sin\left(B+C\right)\)
b: Ta có: \(\widehat{A}=180^0-\widehat{B}-\widehat{C}\)
=>\(cosA=cos\left(180-\left(B+C\right)\right)\)
=>\(cosA=-cos\left(B+C\right)\)