Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^3-3n^2+2n\)
\(=n^3-n^2-2n^2+2n\)
\(=n^2\left(n-1\right)-2n\left(n-1\right)\)
\(=\left(n^2-2n\right)\left(n-1\right)\)
\(=n\left(n-2\right)\left(n-1\right)⋮2.3=6\)
Ta có \(n^3+3n^2+2n=n(n^2+3n+2)=n(n+1)(n+2)\) là tích ba số nguyên liên tiếp. Trong hai số liên tiếp luôn có một chia hết cho 2, trong ba số liên tiếp luôn có một chia hết cho 3. Vậy tích chia hết cho 6.
Ta có \((n^2+n-1)^2-1=(n^2+n-2)(n^2+n)=(n-1)(n+2)n(n+1)=(n-1)n(n+1)(n+2)\) là tích bốn số nguyên liên tiếp.
Trong ba số liên tiếp luôn có một chia hết cho 3. Vậy tích chia hết cho 3. Mặt khác trong bốn số liên tiếp phải có hai số chẵn liên tiếp. Hai số chẵn liên tiếp phải có một số chia hết cho 4. Vậy tích sẽ chia hết cho 8. Từ hai điều đó suy ra tích chia hết 3x8=24.
a) Vì n lẻ nên n có dạng 2k + 1
\(=>A=\left(2k+1\right)^2+4\left(2k+1\right)+3\)
\(=4k^2+4k+1+8k+4+3\)
\(=4k^2+12k+8=4k\left(k+3k\right)+8\)
Vì k lẻ nên k +3k lẻ \(=>k+3k⋮2=>4k\left(k+3k\right)⋮8=>4k\left(k+3k\right)+8⋮8\)
b)\(A=n^3+3n^2-n-3\)
\(=n\left(n^2-1\right)+3\left(n^2-1\right)=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
Vì n lẻ nên n- 1 và n + 1 là 2 số chẵn liên tiếp , trong đó có 1 số chia hết cho 4 số còn lại chia hết cho 2
\(=>\left(n-1\right)\left(n+1\right)⋮8\)
Lại có \(n+3⋮2\)(vì n lẻ) nên \(A=n^3+3n^2-n-3⋮16\)(1)
Vì n là số nguyên nên n có dạng 3k , 3k+1 , 3k-1
Thế vào A bạn chứng minh đc số đó chia hết cho 3 mà theo (1) nó chia hết cho 16 nên A chia hết cho 48
\(n^3-n=n\left(n^2-1\right)\)
\(=\left(n-1\right)n\left(n+1\right)⋮2\)
\(\left(n-1\right)n\left(n+1\right)⋮3\)
\(\Rightarrow\left(n-1\right)n\left(n+1\right)⋮2.3=6\)
\(\Rightarrow n^3-n⋮6\)
ta có : \(n^3-3n^2+2n=\left(n-2\right)\left(n-1\right)n\)
mà \(\left(n-2\right)\left(n-1\right)n\) là tích của 3 số nguyên liện tiếp
\(\Rightarrow n^3-3n^2+2n⋮6\) với mọi \(n\in Z\) \(\Rightarrow\) đpcm
A=n4-3n3+5n2-9n+6
=> A=n4+3n3-6n3-n2+6n2-3n-6n+6
=>A=(n4+3n3-n2-3n)+(6-6n+6n2-6n3)
=>A=[n3(n+3)-n(n+3)]+6(1-n+n2-n3)
=>A=(n3-n)(n+3)+6(1-n+n2-n3)
Mà (n3-n) chia hết cho 6
=> (n3-n)(n+3) chia hết cho 6
Lại có 6(1-n+n2-n3) chia hết cho 6
=> (n3-n)(n+3)+6(1-n+n2-n3) chia hết cho 6
=> A chia hết cho 6 (đpcm)
1/
$A=n^3+3n^2-n-3=n^2(n+3)-(n+3)=(n^2-1)(n+3)$
$=(n-1)(n+1)(n+3)$
Do $n$ lẻ nên đặt $n=2k+1$ với $k$ tự nhiên. Khi đó:
$A=(2k+1-1)(2k+1+1)(2k+1+3)=2k(2k+2)(2k+4)$
$=8k(k+1)(k+2)$
Vì $k,k+1, k+2$ là 3 số tự nhiên liên tiếp nên trong đó có ít nhất 1 số chẵn, 1 số chia hết cho 3.
$\Rightarrow k(k+1)(k+2)\vdots 2, k(k+1)(k+2)\vdots 3$
$\Rightarrow k(k+1)(k+2)\vdots 6$ (do $(2,3)=1$)
$\Rightarrow A\vdots (8.6)$ hay $A\vdots 48$.
2/
$B=n^{12}-n^8-n^4+1=(n^{12}-n^8)-(n^4-1)$
$=n^8(n^4-1)-(n^4-1)=(n^8-1)(n^4-1)$
$=(n^4-1)(n^4+1)(n^4-1)$
Đặt $n=2k+1$ với $k$ tự nhiên. Khi đó:
$(n^4-1)(n^4-1)=[(n-1)(n+1)(n^2+1)]^2$
$=[2k(2k+2)(4k^2+4k+2)]^2=[8k(k+1)(2k^2+2k+1)]^2$
Vì $k,k+1$ là 2 số tự nhiên liên tiếp nên $k(k+1)\vdots 2$
$\Rightarrow 8k(k+1)\vdots 16$
$\Rightarrow (n^4-1)(n^4-1)=[8k(k+1)(2k^2+2k+1)]^2\vdots 16^2=256$
Mà $n^4+1\vdots 2$ do $n$ lẻ.
$\Rightarrow (n^4-1)(n^4-1)(n^4+1)\vdots (2.256)$
Hay $B\vdots 512$
Ta có: n3– n = n(n2 – 1) = n(n – 1)(n + 1)
Với n ∈ Z là tích của ba số nguyên liên tiếp. Do đó nó chia hết cho 3 và 2 mà 2 và 3 là hai số nguyên tố cùng nhau nên n3 – n chia hết cho 2, 3 hay chia hết cho 6.
Bài giải:
Ta có: n3– n = n(n2 – 1) = n(n – 1)(n + 1)
Với n ∈ Z là tích của ba số nguyên liên tiếp. Do đó nó chia hết cho 3 và 2 mà 2 và 3 là hai số nguyên tố cùng nhau nên n3 – n chia hết cho 2, 3 hay chia hết cho 6.
~Best Best~
Ta có: n3 + 3n2 + 2018n = (n3 + 3n2 + 2n) + 2016n
Xét (n3 + 3n2 + 2n) (1); 2016n (2)
Xét (n3 + 3n2 + 2n) (1), có:
n3 + 3n2 + 2n
<=> (n3 + n2) + (2n2 + 2n)
<=> n2(n + 1) + 2n(n + 1)
<=> (n + 1)(n2 + 2n) <=> n(n + 1)(n + 2)
Vì n là số nguyên, nên: n(n + 1)(n + 2) là tích của 3 số nguyên liên tiếp.
=> Vậy sẽ tồn tại số chia hết cho 2 (vì n(n + 1) là tích 2 số nguyên liên tiếp)
=> Vậy sẽ tồn tại số chia hết cho 3 (vì n(n + 1)(n + 2) là tích 3 số nguyên liên tiếp)
=> (n3 + 3n2 + 2n) chia hết cho cho 6 (vì 6 = 2.3 và ƯC{2;3}∈{1}).(3)
Xét 2016n (2) có: 2016 ⋮ 6 và n là số nguyên, nên 2016n ⋮ 6. (4)
Từ (3) và (4), suy ra (n3 + 3n2 + 2n) + 2016n ⋮ 6
<=> n3 + 3n2 + 2018n ⋮ 6 (đpcm)