\(\ge\) 2, ta có:\(\frac{3}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2018

toán lớp 6 bài gì vậy bạn trong nâng cao à

7 tháng 2 2019

đpcm<=> 5/9.14+5/14.19+...+5/(5n-1)(5n+4)<1/9

        <=>1/9-1/5n+4<1/9

        <=>5n-5/45n+36<1/9(đúng với mọi n>=2)

Vậy ddpcm là đúng

         

Đặt \(A=\frac{3}{9.14}+\frac{3}{14.19}+.......+\frac{3}{\left(5n-1\right)\left(5n+4\right)}\)

\(5A=\frac{15}{9.14}+\frac{15}{14.19}+.....+\frac{15}{\left(5n-1\right)\left(5n+4\right)}\)

\(5A=3.\left(\frac{5}{9.14}+\frac{5}{14.19}+......+\frac{5}{\left(5n-1\right)\left(5n+4\right)}\right)\)

\(5A=3.\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+.....+\frac{1}{5n-1}-\frac{1}{5n+4}\right)\)

\(5A=3.\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)

\(5A=\frac{1}{3}-\frac{1}{5n+4}\)

=> \(5A<\frac{1}{3}\) 

=> \(A<\frac{1}{3}:5\)

hay \(A<\frac{1}{15}\) \(\left(đpcm\right)\)

Nhớ nhé bạn

nhớ bạn

10 tháng 3 2017

câu này quen quen

10 tháng 3 2017

là s hả bạn?

17 tháng 3 2017

kệ!! cái loại người chỉ dc cá mách lẻo là ko ai bằng! ra kia cho người khác trả lời câu hỏi!! chắn đường chắn lối tốn cả diện tích!!

17 tháng 3 2017

Ra chỗ khác ngay!!

29 tháng 1 2017

Đặt A=  \(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n+1\right).\left(5n+4\right)}\)

\(\Rightarrow A=3.\left(\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{\left(5n-1\right)\left(5n+4\right)}\right)\)

\(=3.5.\frac{1}{5}.\left(\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{\left(5n-1\right)\left(5n+4\right)}\right)\)

\(=\frac{3}{5}\left(\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{\left(5n-1\right)\left(5n+4\right)}\right)\)

\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)\)

\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)

\(\Rightarrow\)\(A< \frac{3}{5}.\frac{1}{9}\)\(\Rightarrow A< \frac{1}{15}\)(đpcm)

29 tháng 1 2017

Ta có: \(\frac{3}{9.14}+\frac{3}{14.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}\)

\(=\frac{3}{5}\left(\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{\left(5n-1\right)\left(5n+4\right)}\right)\)

\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)\)

\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{5n-1}\right)\)

\(=\frac{1}{15}-\frac{3}{5\left(5n-1\right)}\)

\(\frac{1}{15}-\frac{3}{5\left(5n-1\right)}< \frac{1}{15}\) nên \(\frac{3}{9.14}+\frac{3}{19.19}+...+\frac{3}{\left(5n-1\right)\left(5n+4\right)}< \frac{1}{15}\left(đpcm\right)\)