Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
toán hsg lớp 7:chứng minh rằng với mọi số nguyên dương n thì : 3^n+2 -2^n+2 +3^n-2^n chia hết cho 10
=>(3^n+2)+(3^n)-(2^n+2)-(2^n)=3^n((3^2)+1)-2^n((2^2)+1)=(3^n)*10-(2^n)*5=(3^n)*10-(2^n-1)*5*2=(3^n)*10-(2^n-1)*10=10*((3^n)-(2^n-1) chia hết cho 10
=>(3^n+2)-(2^n+2)+(3^n)-(2^n)chia hết cho 10
Có: 3^n+2-2^n+2-3^n-2^n
=3^n.9-2^n.4+3^n-2^n
=3^n.10-2^n.5
Mà: +,10 chia hết cho 10
=> 3^n.10 chia hết cho 10. (1)
+, n là số nguyên dương => n lớn hơn hoặc =1
=> 2^n.5=2.2..2.5 (n chữ số 2)
=(2.5).2.2...2 (n-1 chữ số 2)
=10.2.2.2..2
=> Chia hết cho 10 (tại vì có 10 chia hết cho 10) (2)
Từ 1 và 2 => 3^n.10-2^n.5 chia hết cho 10 (Cả số bị trừ và số trừ đều chia hết cho 10-> Hiệu cũng sẽ chia hết cho 10)
=> ĐPCM.
=>5x-3>=7 hoặc 5x-3<=-7
=>x>=2 hoặc x<=-4/5