Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3^{n+2}-2 ^{n+2}+3^n-2^n=3^{n+2}+3^n-\left(2^{n+2}+2^n\right)=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5=3^n.10-2^{n-1}.10=\left(2^n-2^{n-1}\right).10\) chia hết cho 10
ta có : Số n và số có tổng các chữ số bằng n có cùng số dư trong phép chia cho 9,do đó 11...11 -n chia hết cho 9(11..11 là số có n chữ số 1)
10 mủ n +18.n-1=10 mủ n -1 -9.n +27.n=99...9 -9.n +27 .n(99...9 là số có n chữ số 9)=9.(11...1-n)+27.n chia hết cho 27 (11..11 là số có n chữ số 1)
Vậy ...
T I C K cho mình nha
3^n+2-2^n+2+3^n-2^n
=3^n+2+3^n-(2^n+2+2^n)
=3^n(3^2+1)-2^n(2^2+1)
=3^n.10-2^n.5=3^n.10-2^n-1.10=10(3^n-2^n-1) chia hết cho 10(đpcm)
\(A=4m^3+9m^2-19m-30=4m^3-4m+9m^2-3m-12m-30\)
\(=4m\left(m^2-1\right)+3m\left(3m-1\right)-12m-30\)
\(=4m\left(m-1\right)\left(m+1\right)+3m\left(3m-1\right)-6\left(2m+5\right)\)
Ta có:
- \(-6\left(2m+5\right)\)chia hết cho 6 với mọi m.
- \(3m\left(3m-1\right)\)chia hết cho 6 với mọi m (Vì 3m và 3m-1 là 2 số tự nhiên liên tiếp nên tích chia hết cho 2 và 3m chia hết cho 3).
- \(4m\left(m-1\right)\left(m+1\right)\)chia hết cho 6 vì \(m\left(m-1\right)\left(m+1\right)\)là tích của 3 số tự nhiên liên tiếp.
A có các số hạng chia hết cho 6 nên A chia hết cho 6 với mọi m nguyên (ĐPCM).
Đăt S = 3^(n+2)-2^(n+2)+3^n-2^n = 3^(n+2) + 3^n - [2^(n+2) + 2^n]
Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10)
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5)
Suy ra S chia hết cho 10.
\(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-2^{n+2}-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n.\left(3^2+1\right)-2^n.\left(2^2+1\right)=3^n.10-2^n.5=3^n.10-2^{n-1}.10=\left(3^n-2^{n-1}\right).10\)
luôn chia hết cho 10 (đpcm)
Ta có:
4n+3 +4n+2 -4n+1 -4n
=4n-1 .44 + 4n-1 . 43 - 4n-1 . 42 - 4n-1 .4
=4n-1 . (44 +43 - 42 -4)
=4n-1 . 300 : 300
= 4n+3 + 4n+2 -4n+1 -4n \(⋮\) 300 (ĐPCM)
Đặt A=4^{n+3}+4^{n+2}-4^{n+1}-4^n
A= 4^n-1(4^4+4^3-4^2-4)
A=4^n-1.300⋮300
k cho mik nha học tốt.
Ta có:
3^n+2-2^n+2+3^n-2^n
=3^n+2+3^n-(2^n+2+2^n)
=3^n(3^2 +1)-2^n(2^2 +1)
=3^n.10-2^n.5=3^n.10-2^(n-1).10
=(3^n-2^(n-1)).10 chia het cho 10
Tick nhé
\(3^{n+2}-2^{n+2}+3^n-2^n\)
\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n\left(9+1\right)-2^{n-1}.2.\left(4+1\right)\)
\(=3^n.10-2^{n-1}.10\)
\(=10\left(3^n-2^{n-1}\right)⋮10\) (đpcm)
Đặt S = 3^(n+2)-2^(n+2)+3^n-2^n = 3^(n+2) + 3^n - [2^(n+2) + 2^n]
Ta có 3^(n+2) + 3^n = 9.3^n + 3^n = 10.3^n (chia hết cho 10)
Và 2^(n+2) + 2^n = 4.2^n + 2^n = 5.2^n (chia hết cho 10, vì chia hết cho 2 và 5)
Suy ra S chia hết cho 10.