K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2018

ta có : \(P=n\left(2n-3\right)-2n\left(n+2\right)=2n^2-3n-2n^2-4n=-7n⋮7\forall n\in Z\left(đpcm\right)\)

27 tháng 6 2017

a) n2(n + 1) + 2n(n + 1) 

= (n2 + 2n)(n + 1)

= n(n + 2)(n + 1)  chia hết cho 6 vì là 3 số tự nhiên liên tiếp 

b) (2n - 1)3 - (2n - 1) 

= (2n - 1).[(2n - 1)2 - 1]

= (2n - 1).{ [ (2n - 1) + 1] . [ (2n - 1) -1 ] }

= *2n - 1) . 2n . (2n - 2)      chia hết cho 8 vì là 3 số chẵn liên tiếp

c) (n + 2)2 - (n - 2)2

= n2 + 4n - 4 - (n2 - 4n + 4)

= n2 + 4n - 4 - n2 + 4n - 4

= 8n - 8         chia hết cho 8

3 tháng 11 2018

\(A=\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)\)

\(=3n-2n^2-3+2n-\left(n^2+5n\right)\)

\(=3n-2n^2-3+2n-n^2-5n\)

\(=\left(3n-5n+2n\right)-\left(2n^2-n^2\right)-3\)

\(=-3\)

\(\Rightarrowđpcm\)

3 tháng 11 2018

em ms hok lớp 1

24 tháng 6 2016

 n(2n-3)-2n(n+1) 
=2n^2-3n-2n^2-2n 
=-5n 
-5n chia het cho 5 voi moi so nguyên n vi -5 chia het cho 5 
vay n(2n-3)-2n(n+1) chia het cho 5

18 tháng 5 2017

Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\) = \(2n^2-3n-2n^2-2n\)

= \(-5n\)

\(-5⋮5\) => -5n \(⋮\) 5

=> \(n\left(2n-3\right)-2n\left(n+1\right)\) \(⋮\) 5 với mọi n \(\in\) Z

20 tháng 8 2017

n(2n-3)-2n(n+1)=2n2-3n+2n2-2n=-5n \(⋮\) 5 với mọi n

14 tháng 7 2017

\(S=\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\)

\(=2n\left(n^2-3n-1\right)+\left(n^2-3n-1\right)-2n^3+1\)

\(=2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)

\(=\left(2n^3-2n^3\right)-\left(6n^2-n^2\right)-\left(2n+3n\right)-1+1\)

\(=-5n^2-5n=-5n\left(n+1\right)⋮5\)

14 tháng 7 2017

\(S=\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\)

\(=2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)

\(=-5n^2-5n=-5n\left(n+1\right)⋮5\)

Vậy \(\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1⋮5\)

2 tháng 5 2017

Ta có : \(\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)\)

\(=n\left(3-2n\right)-\left(3-2n\right)-n^2-5n\)

\(=3n-2n^2-3+2n-n^2-5n\)

\(=-3n^2-3\)

\(=-3\left(n^2+1\right)⋮3\)

Vậy \(\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)⋮3\)

25 tháng 6 2017

Ta có \(\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)=3n-2n^2-3+2n-n^2-5n=-3n-3\)

mà -3n chia hết cho 3,-3 chia hết cho 3

=> biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3(đpcm)

10 tháng 6 2016

\(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

\(-5n\)chia hết cho \(5\)với mọi số nguyên \(n\)vì \(-5\)chia hết cho \(5\)

Vậy : \(n\left(2n-3\right)-2n\left(n+1\right)\)chia hết cho \(5\)