Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)
b) \(x-x^2-3=-\left(x^2-x+3\right)\)
\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)
1: \(\Leftrightarrow a^5-a^4b+b^5-ab^4>=0\)
\(\Leftrightarrow a^4\left(a-b\right)-b^4\left(a-b\right)>=0\)
\(\Leftrightarrow\left(a-b\right)^2\cdot\left(a+b\right)\cdot\left(a^2+b^2\right)>=0\)(luôn đúng khi a,b dương)
Mong mọi người giúp với, mình đang cần gấp!!! Thanks
a) (x+3)^2-(x-5)(x+5)-6x
= x^2+6x+9-x^2+25-6x
= 9+25
= 94
vậy...
a) \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)
Vì \(n;n+1;n-1\)là 3 số nguyên liên tiếp chia hết cho 6.
\(\Rightarrow a\left(a+1\right)\left(a-1\right)\)chia hết cho 6
Hay \(a^3-a\)chia hết cho 6 (với mọi \(a\in Z\))
b) \(ab.\left(a^2-b^2\right)\)
Nếu a hoặc b chia hết cho 6 \(\Rightarrow ab.\left(a^2-b^2\right)\)chia hết cho 6
Nếu a và b không chia hết cho 6 mà \(a^2\)chia 6 dư 1(2;3;4;5....) và \(b^2\)chia 6 dư 1(2;3;4;5...)
\(\Rightarrow a^2-b^2\)chia 6 dư 1 (2;3;4;5...) - 1 (2;3;4;5...) = 0
thì \(ab.\left(a^2-b^2\right)\)chia hết cho 6.
a: \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\)
Vì a;a-1;a+1 là ba số nguyên liên tiếp
nên \(a\left(a-1\right)\left(a+1\right)⋮3!\)
hay \(a^3-a⋮6\)
b: \(ab\left(a^2-b^2\right)=a^3b-ab^3\)
\(=a^3b-ab+ab-ab^3\)
\(=b\left(a^3-a\right)+a\left(b-b^3\right)\)
Vì \(a^3-a⋮6\)
và \(b-b^3=-\left(b^3-b\right)⋮6\)
nên \(ab\left(a^2-b^2\right)⋮6\)
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
a)Ta có: \(a^2+2a+b^2+1=a^2+2a+1+b^2\)
\(=\left(a+1\right)^2+b^2\)
Vì \(\left(a+1\right)^2\ge0;b^2\ge0\)
\(\left(a+1\right)^2+b^2\ge0\)
b)\(x^2+y^2+2xy+4=\left(x+y\right)^2+4\)
Vì \(\left(x+y\right)^2\ge0\Rightarrow< 0\left(x+y\right)^2+4\left(đpcm\right)\)
c)Ta có:\(\left(x-3\right)\left(x-5\right)+2=x^2-8x+15+2\)
\(=x^2-8x+16+1\)
\(=\left(x-4\right)^2+1\)
Vì \(\left(x-4\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2+1\ge1\)
Vậy (x-3)(x-5) + 2 > 0 ∀ x R
1. (a+b)^2 ≥ 4ab
<=> a2+2ab+b2≥ 4ab
<=> a2+2ab+b2-4ab≥ 0
<=> a2-2ab+b2≥ 0
<=> (a-b)^2 ≥ 0 ( luôn đúng )
2. a^2 + b^2 + c^2 ≥ ab + bc + ca
<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca
<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0
<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)
a) Nếu n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2 → k2 – n2 = 2014
=> (k – n)(k + n) = 2014 (*)
Vậy (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.
Mặt khác (k – n)(k + n) = 2014 là chẵn
Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4
Mà 2014 không chia hết cho 4
Suy ra đẳng thức (*) không thể xảy ra.
Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương
b) Với 2 số a, b dương:
Xét: a2 + b2 – ab ≤ 1
<=> (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)
<=> a3 + b3 ≤ a + b
<=> (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)
<=> a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6
<=> 2a3b3 ≤ ab5 + a5b
<=> ab(a4 – 2a2b2 + b4) ≥ 0
<=> ab(a2 - b2) ≥ 0 đúng ∀ a, b > 0 .
Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5
Biến đổi vế phải:
(a3+b3)(a2+b2)-(a+b)=(a5+b5)+(a3b2+a2b3)-(a+b)=a5+b5+a2b2(a+b)-(a+b)
Thay ab=1 vào ta được:
a5+b5+(a+b)-(a+b)=a5+b5
Sau khi biến đổi ta thấy vế phải bằng vế trái.Vậy đẳng thức đã được chứng minh