...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2017

\(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b\ge0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(a-b\right)^2\ge0\forall a,b\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a-1=0\\b-1=0\\a-b=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=1\\a=b\end{matrix}\right.\Rightarrow a=b=1\)

2 tháng 10 2018

Từ a+b=c Ta được a+b-c=0

Do đó:\(\left(a+b-c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab-2ac-2bc=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab-ac-bc\right)=0\)(đccm)

2 tháng 10 2018

Có thể ( chỉ là có thể thôi ) các bạn chưa học hằng đẳng thức nâng cao nên mình sẽ chứng minh và dùng nó luôn , còn các bạn cứ lấy nó mà dung , bởi vì nó cũng có thể được coi là " định lý ", đại loại thế

Bổ đề : CMR: \(\left(a+b-c\right)^2=a^2+b^2+c^2+2\left(ab-ac-bc\right)\)

\(\left(a+b-c\right)\left(a+b-c\right)=a^2+ab-ac+ab+b^2-bc-ac-bc+c^2\)

\(=a^2+b^2+c^2+\left(ab+ab\right)-\left(ac+ac\right)-\left(bc+bc\right)\)

\(=a^2+b^2+c^2+2\left(ab-ac-bc\right)\)

Nhờ bổ đề trên\(\Rightarrow a^2+b^2+c^2+2\left(ab-ac-bc\right)=a^2+b^2+c^2+2ab-2ac-2bc=\left(a+b-c\right)^2=0\)

\(\Rightarrow\)\(a+b-c=0\)vì \(\left(a+b-c\right)\ge0\)

\(\Rightarrow\)\(a+b=c\left(DPCM\right)\)

Còn nhiều hằng đẳng thức nâng cao nữa cũng kiểu dạng này, nếu bạn muốn biết thì hãy tự chứng minh nó và áp dụng nó vào bài như một bổ đề, mình chỉ chia sẽ kinh nghiệm vậy thôi

GOOD LUCK

8 tháng 5 2019

Áp dụng bất đẳng thức Bunhiacopxki, ta có:

\(\left(a+b+c\right)^2\le\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)=3\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge1\Leftrightarrow a^2+b^2+c^2\ge\frac{1}{3}\)

Dấu = khi a=b=c\(=\frac{1}{3}\)

8 tháng 5 2019

ta có: a2 +b2 +c2 =\(\frac{a^2}{1}\) +\(\frac{b^2}{1}\) +\(\frac{c^2}{1}\)

áp dụng bđt bunhia dạng phân thức ta có :

\(\frac{a^2}{1}+\frac{b^2}{1}+\frac{c^2}{1}\)\(\frac{\left(a+b+c\right)^2}{1+1+1}\) =\(\frac{1}{3}\)

đấu = xảy ra khi a=b=c=\(\frac{1}{3}\)

10 tháng 2 2020

Bài 1 :

ĐKXĐ : \(2-x\ne0\)

=> \(x\ne2\)

Ta có :\(\frac{4x+1}{4\left(2-x\right)}\ge x+2\)

=> \(4x+1\ge4\left(x+2\right)\left(2-x\right)\)

=> \(4x+1\ge4\left(4-x^2\right)\)

=> \(4x+1\ge16-4x^2\)

=> \(4x^2+4x-15\ge0\)

=> \(4x^2+10x-6x-15\ge0\)

=> \(4x\left(x-1,5\right)+10\left(x-1,5\right)\ge0\)

=> \(\left(4x+10\right)\left(x-1,5\right)\ge0\)

=> \(\left[{}\begin{matrix}4x+10\ge0\\x-1,5\ge0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x\ge-\frac{5}{2}\\x\ge\frac{3}{2}\end{matrix}\right.\)

=> \(x\ge\frac{3}{2}\)

Vậy tập nghiệm của bất phương trình trên là \(S=\left\{x|x\ge\frac{3}{2}\right\}\) .

10 tháng 2 2020

Bài 2:

Ta có: \(\left(a+b\right)\left(a^4+b^4\right)\ge\left(a^2+b^2\right)\left(a^3+b^3\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a^4+b^4\right)-\left(a^2+b^2\right)\left(a^3+b^3\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^4+b^4\right)-\left(a^2+b^3\right)\left(a+b\right)\left(a^2-ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left[a^4+b^4-\left(a^2+b^2\right)\left(a^2-ab+b^2\right)\right]\ge0\)

\(\Leftrightarrow\left(a+b\right)\left[a^4+b^4-a^4+a^3b-a^2b^2-a^2b^2+ab^3-b^4\right]\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^3b+ab^3-a^2b^2\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)ab\left(a^2+b^2-2ab\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)ab\left(a-b\right)^2\ge0\)

BĐT luôn đúng vì \(a>0;b>0\)\(\left(a-b\right)^2\ge0\forall a,b\)

Vậy ta có điều phải chứng minh.

Cũng chẳng biết có đánh lộn chỗ nào không nữa. Lần sau chia nhỏ ra.

3 tháng 5 2018

Áp dụng bất đẳng thức Cauchy-Schwarz:

\(a^2+b^2+c^2\ge\dfrac{\left(a+b+c\right)^2}{1+1+1}=\dfrac{\left(\dfrac{3}{2}\right)^2}{3}=\dfrac{9}{\dfrac{4}{3}}=\dfrac{9}{12}=\dfrac{3}{4}\)

Dấu "=" xảy ra khi: \(a=b=c=\dfrac{1}{2}\)

4 tháng 5 2018

có cách khác ko bn ?

16 tháng 2 2019

\(gt\Rightarrow\left(a+b\right)^2=1\Leftrightarrow a^2+2ab+b^2=1\) (1)

Do theo BĐT AM-GM (Cô si) \(a^2+b^2\ge2\left|ab\right|\ge2ab\)

Thay vào (1) suy ra \(1=a^2+2ab+b^2\ge4ab\)

Suy ra \(ab\le\frac{1}{4}\).Từ đây ta có: \(a^2+b^2=\left(a+b\right)^2-2ab=1-2ab\ge\frac{1}{2}^{\left(đpcm\right)}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a^2=b^2\\a+b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\a+b=1\end{cases}}\Leftrightarrow a=b=\frac{1}{2}\)

Phép chứng minh hoàn tất!

29 tháng 6 2017

Ta có:

\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)

\(\Leftrightarrow\) \(a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\)

\(\Leftrightarrow\) \(a^2y^2+b^2x^2=2axby\)

\(\Leftrightarrow\) \(a^2y^2+b^2x^2-2axby=0\)

\(\Leftrightarrow\) \(\left(ay-bx\right)^2=0\)

\(\Leftrightarrow\) \(ay-bx=0\)

\(\Leftrightarrow\) \(ay=bx\)

\(\Leftrightarrow\) \(\dfrac{a}{x}=\dfrac{b}{y}\)

24 tháng 11 2019

Bài 1:

Ta có: \(\frac{ab}{a+b}=ab.\frac{1}{a+b}\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{b}{4}+\frac{a}{4}\)

Tương tự các BĐT còn lại rồi cộng theo vế ta có d9pcm.

Bài 2: 2 bài đều dùng Svac cả!

24 tháng 11 2019

Bài 2a làm bên h rồi nên chụp lại thôi!

flOnyqL.png (cần thì ib t gửi link cho)

24 tháng 11 2019

Tiện tay chém trước vài bài dễ.

Bài 1:

\(VT=\Sigma_{cyc}\sqrt{\frac{a}{b+c}}=\Sigma_{cyc}\frac{a}{\sqrt{a\left(b+c\right)}}\ge\Sigma_{cyc}\frac{a}{\frac{a+b+c}{2}}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Nhưng dấu bằng không xảy ra nên ta có đpcm. (tui dùng cái kí hiệu tổng cho nó gọn thôi nha!)

Bài 2:

1) Thấy nó sao sao nên để tối nghĩ luôn

2) 

c) \(VT=\left(a-b+1\right)^2+\left(b-1\right)^2\ge0\)

Đẳng thức xảy ra khi a = 0; b = 1

24 tháng 11 2019

2b) \(VT=\left(a-2b+1\right)^2+\left(b-1\right)^2+1\ge1>0\)

Có đpcm