Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của ngoc Ngoc - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo ở link trên.
a. Ta có :a>hoặc =b ,a>hoặc =c>0
suy ra :b - c<a< b+c
Ta có : a< b+c
suy ra :a+a<b+c+a
suy ra:2a<a+b+c
suy ra :a< a+b+c\2
b. ta có : a> hoặc =b>0 ,a> hoặc =c>0
suy ra :b+c < hoặc = a+a
suy ra : b+c < hoặc = 2a
suy ra :a+b+c< hoặc = 3a
suy ra : a+b+c \3 < hoặc = a
A B C a b c
Giả sử 8 số nguyên dương tùy ý đã cho là a1, a2,..., a8 với
1 ≤ a1 ≤ a2 ≤....≤ a8 ≤ 201 ≤ a1 ≤ a2 ≤... ≤ a8 ≤ 20
Nhận thấy rằng a,b,c thỏa mãn a ≥ b ≥ ca ≥ b ≥ c và b+c > ab+c >a thì a,b,c là độ dài 3 cạnh của một tam giác . Từ đó ta thấy nếu trong các số a1,a2,..., a8 không chọn đc 3 số là độ dài 3 cạnh của một tam giác thì:
a6 ≥ a7 + a8 ≥ 1+1 = 2a6≥ a7 + a8 ≥ 1 +1=2
a5 ≥ a6 + a7 ≥2 + 1= 3a5≥ a6 + a7≥ 2 +1=3
a4 ≥ a5 + a6 ≥ 3+2 = 5a4 ≥ a5+ a6 ≥ 3+2=5
a3 ≥ a4 +a5 ≥ 5+3=8a3 ≥ a4+a5 ≥ 5+3=8
a2 ≥ a3 +a4 ≥ 8+5=13a2 ≥ a3+a4 ≥ 8+5=13
a1 ≥ a2 + a 3≥ 13+8=21a1 ≥ a2+a3 ≥ 13+8=21,( trái với giả thiết)
Vậy điều giả sử trên là sai. Do đó trong 8 số nguyên trên đã cho luôn chọn đc 3 số x,y,z là độ dài 3 cạnh của một tam giác.
~ Chúc bn hk tốt!!!~