K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2017

Love you!!! 

27 tháng 11 2017

Love you!!!! 

14 tháng 10 2015

Học sinh hư! Học sinh hư!!! tran thi quynh huong

2 tháng 1 2017

tự làm nha. dễ lắm

26 tháng 1 2019

Nếu có 2 số cùng số dư khi chia cho 100 ta có dpcm. Giả sử không có 2 số nào cùng số dư khi chia cho 100. Khi đó có ít nhất 51 số khi chia cho 100 có số dư khác 50 là a1,a2,...,a51

đặt bi=−ai (1≤i≤51). Xét 102 số ai và bi. Theo Dirichlet thì tồn tại i≠j sao cho ai≡bj (mod 100). Suy ra 

26 tháng 1 2019
Chia 52 số nguyên tùy ý cho 100, ta có thể có các số dư từ 0, 1, 2, …, 99. Ta phân các số dư thành các nhóm sau: {0}; {1, 99}; …, {49, 51}, {50}. Ta có tất cả 51 nhóm và khi chia 52 số cho 100 ta có 52 số dư. Theo nguyên lí Dirichlet sẽ có 2 số dư cùng thuộc một nhóm. Ta có hai trường hợp:Trường hợp 1: Hai số dư giống nhau, suy ra hiệu hai số có hai số dư tương ứng đó sẽ chia hết cho 100Trường hợp 2: Hai số dư khác nhau, suy ra tổng của hai số có hai số dư tương ứng đó sẽ chia hết cho 100
DD
9 tháng 8 2021

Nếu trong \(52\)số đã cho có hai số có cùng số dư khi chia cho \(100\)ta chỉ cần chọn hai số đó, có hiệu chia hết cho \(100\).

Nếu trong \(52\)số đã cho không có hai số nào có cùng số dư khi chia cho \(100\).

Xét các bộ \(0,\left(1,99\right),\left(2,98\right),...,\left(a,100-a\right),...,\left(49,51\right)\)(các số dư của các số khi chia cho \(100\))

Có \(51\)bộ mà có \(52\)số nên theo nguyên lí Dirichlet có ít nhất hai số thuộc một bộ. 

Xét hai số thuộc bộ đó, dễ thấy tổng của chúng chia hết cho \(100\).

Ta có đpcm. 

28 tháng 8 2022

anh Đoàn Đức Hà ơi chỉ có 50 bộ thôi mà anh sao lại 51 bộ ạ

28 tháng 12 2015

tham khảo câu hỏi tương tự nha bạn

28 tháng 12 2015

thao khảo trong câu hỏi tương tự nha bạn có một số dạng như vậy đó nhiên

12 tháng 2 2016

Gọi r1, r2, ... r52 là số dư khi chia mỗi số đó cho 100 
mỗi ri (i = 1, 2, ..., 52) nhận giá trị từ các số 0, 1, 2, ..., 99 (có 100 số) 
* nếu có 2 số ri bằng nhau thì như trên 2 số tương ứng có hiệu chia hết cho 100 
* nếu 52 số ri đôi một khác nhau 
ta thấy từ 1 đến 99 có 49 cặp số có tổng là 100 đó là (1, 99) ; (2, 98) .. (49,51) 
theo nguyên lí Dirichlet trong 50 số chọn ra có ít nhất 2 số cùng 1 cặp 
và như vậy cùng với 2 số 0 và 50 ta chọn 52 số ri khác nhau => có ít nhất 2 số ri, rj (i # j) thuộc cùng 1 cặp, giả sử là r1 và r2 có r1 + r2 = 100 
a = 100m + r1 ; b = 100n + r2 
=> a+b = 100(m+n) + r1 + r2 = 100(m+n) + 100 chia hết cho 100

12 tháng 2 2016

Nếu có đúng một số chia hết cho 100, 51 số còn lại không chia hết cho 100
Xét 50 cặp số dư : (1;99);(2;98);(3;97);...;(50;50)
Theo nguyên lí Dirichlet, tồn tại hai số mà số dư của chúng khi chia cho 50 là một trong 50 cặp số trên.
Giả sử số dư của hai số đó rơi vào cặp (a;b) (với a+b=100)
- Nếu cả hai số cùng chia 100 dư a (hoặc dư b) thì hiệu của chúng chia hết cho 100
- Nếu hai số, một chia 100 dư a, một số chia 100 dư b thì tổng của chúng chia hết cho 100
Bài toán được chứng minh
Nếu cả 52 số đều không chia hết cho 100. Tương tự như trên
Ta có đpcm