Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3 số lẻ liên tiếp hoặc 3 số chẵn liên tiếp chia hết cho 3
Gọi 3 số tự nhiên đó là a, b, c
Ta thấy có 3 số mà chỉ có loại đó là chẵn và lẻ
=> trong 3 số a, b, c phải có 2 số cùng tính chẵn lẻ
=> tổng của chúng chia hết cho 2
Bn tham khảo lời giải ở link này nhé :
Câu hỏi của Thiên Yết 2k8 - Toán lớp 6 - Học trực tuyến OLM
#H
a, ta có 5 số tn liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 1 => n +4 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 2 => n +3 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 4 => n +1 chia hết cho 5 => ĐPCM
Vậy trong 5 số tự nhiên liên tiếp luôn có một số chia hết cho 5
Sử dụng nguyên lý ĐI-rích-lê. Có bài tương tự trong câu hỏi tương tự
Giả sử không tìm được số nào trong n số tự nhiên liên tiếp đã cho mà chia hết cho n. Khi đó n số này chia cho n chỉ nhận được nhiều
nhất là \(n-1\) số dư khác nhau \(\left(1;2;3;.....;n-1\right)\), theo nguyên lí Dirichlet tồn tại hai số chia cho n có cùng số dư, chẳng
hạn là a và b với a > b, khi đó a - b chia hết cho n, điều này mâu thuẫn với \(0< a-b< n\). Từ đó suy ra điều phải chứng minh.
gọi 5 số bất kì là a1,a2,a3,a4,a5
theo dirichle tồn tại ít nhất 2 số có cùng số dư khi chia cho 3
TH1 : có ít nhất 3 số có cùng số dư khi chia cho 3 thì tổng 3 số đó chia hết cho 3
TH2 :chỉ có 2 số có cùng số dư khi chia cho 3
nếu r=0 thì a1+a3+a5 chia hết cho 3
nếu r=1 thì a3=3k+2 or a3=3k nên a1+a3+a5 chia hết cho 3
tương tự với r=2
Gọi 5 số bất kì là a1,a2,a3,a4,a5
Theo dirichle tồn tại ít nhất 2 số có cùng số dư khi chia cho 3
=> Ta có 2 TH:
+ TH1 : Có ít nhất 3 số có cùng số dư khi chia cho 3 thì tổng 3 số đó chia hết cho 3
+ TH2 : Chỉ có 2 số có cùng số dư khi chia cho 3
Giả sử a1 ≡ a2 ≡ r(mod3) ; a3 ≡ a4(mod3) ≡ a2 ≡ r(mod3) ; a3 ≡ a4(mod3)
+ Nếu r = 0 thì a1 + a3 + a5 chia hết cho 3
+ Nếu r = 1 thì a3 = 3k+2 hoặc a3 = 3k nên a1 + a3 + a5 chia hết cho 3
Bạn làm tương tự như vậy với TH r = 2 nhé