Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 5 số tự nhiên liên tiếp là n- 2; n - 1; n ; n + 1; n + 2
Ta có : (n-2)2 + (n-1)2 + n2 + (n+1)2 + (n +2)2 = (n2 - 4n + 4) + (n2 - 2n + 1) + n2 + (n2 + 2n + 1)+( n2 + 4n + 4) = 5n2 + 10 = 5.(n2 + 2)
Ta có 5. (n2 + 2) chia hết cho 5 nhưng không chia hết cho 25
vì n2 + 2 không chia hết cho 5 (do n2 có thể tận cùng là 0;1;4;5;6;9 )
=> 5.(n2 + 2) không là số chính phương => đpcm
Gọi 5 số tự nhiên liên tiếp là (a-2 ) (a-1) a (a+1) (a+2)
Ta có :
Ta có số chính phương luôn luôn có dạng 4k +1 hoặc 4k
Xét 2 TH ta luôn có:
TH1:
Ta có A= 20k + 10 = 4m + 2 (m thuộc N) ko là số chính phương
TH2:
Ta có: A= 20k + 15 = 4m + 3(m thuộc N) ko là số chính phương
Gọi 5 STN liên tiếp là n−2;n−1;n;n+1;n+2
Ta có A=(n−2)2+(n−1)2+n2+(n+1)2+(n+2)2
=5n2+10=5(n2+2)
n2 không tận cùng là 3;8=>n2+2 không tận cùng là 5 hoặc 0=>n2+2 không chia hết cho 5
=>5(n2+2) không chia hết cho 25=> A không phải SCP
2.
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x
∈
∈ N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Gọi 4 số tự nhiên liên tiếp là \(a,\left(a+1\right),\left(a+2\right),\left(a+3\right)\)
Tổng các số là \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)\)
\(=a+a+1+a+2+a+3\)
\(=4a+6\)
\(=4a+4+2\)
\(=4\left(a+1\right)+2\)
Tuy nhiên số chính phương chia hết cho 4 hoặc chia 4 dư 1
Mà tổng 4 số tự nhiên chia 4 dư 2 nên k phải số chình phương
\(=>ĐPCM\)
#)Giải :
Gọi 5 số tự nhiên liên tiếp đó là n - 2, n - 1, n, n +1, n + 2 (n ∈ N, n > 2).
Ta có: (n - 2)2 + (n - 1)2 + n2 + (n + 1)2 + (n + 2)2 = 5(n2 + 2)
Vì n2 không thể tận cùng là 3 hoặc 8, do đó n2 + 2 không thể chia hết cho 5.
=> 5(n2 + 2) không là số chính phương, cũng có nghĩa là tổng của 5 số tự nhiên liên tiếp không thể là số chính phương.
Cau hoi tuong tu nhe
Ban chi can doi so 5 thanh so 3 roi lam
Tick nha
Giải:
a) Gọi 3 số tự nhiên liên tiếp đó lần lượt là: a, a + 1, a + 2 ( a,a+1,a+2 thuộc N )
Xét tổng a, a + 1, a + 2 ta có:
\(a+\left(a+1\right)+\left(a+2\right)=\left(a+a+a\right)+\left(1+2\right)=3a+3=3\left(a+1\right)⋮3\)
\(\Rightarrowđpcm\)
b) Gọi 4 số tự nhiên liên tiếp đó lần lượt là a, a + 1, a + 2, a + 3 ( a,a+1,a+2,a+3 thuộc N )
Xét tổng của a, a + 1, a + 2, a + 3 ta có:
\(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)\)
\(=\left(a+a+a+a\right)+\left(1+2+3\right)\)
\(=4a+6\)
\(\Rightarrowđpcm\)
c) Gọi 5 số tự nhiên đó lần lượt là: a, a + 1, a + 2, a + 3, a + 4 ( a, a+1, a+2 , a+3, a+4 thuộc N )
Xét tổng của a, a + 1, a + 2, a + 3, a + 4 ta có:
\(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)\)
\(=\left(a+a+a+a+a\right)+\left(1+2+3+4\right)\)
\(=5a+10\)
\(=5\left(a+2\right)⋮5\)
\(\Rightarrowđpcm\)
a) Gọi ba số tự nhiên liên tiếp là a, a + 1 , a + 2 , a\(\in\)N. Khi đó a + (a+1) + (a+2) = 3a + a
Mà 3a \(⋮\) 3, 3 \(⋮\) 3 \(\Rightarrow\) (3a + a) \(⋮3\left(đpcm\right)\)
b) \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)=4a+6\)
Mà \(4a⋮4,6⋮̸\) 4, nên (4a+6) \(⋮̸\) 4 (đpcm)
c) a + (a + 1) + (a + 2) + (a + 3) + (a+4) = 5a + 10
Mà 5a \(⋮\) 5 và 10 \(⋮5nên\left(5a+10\right)⋮5\left(đpcm\right)\)
cô giáo tớ vừa cho bài tập này về nhà làm
Trong 4 số tự nhiên liên tiếp có 2 số chẵn và 2 số lẻ
Mà số chính phương chia 4 dư 0 (với số chẵn) hoặc 1 (với số lẻ)
suy ra tổng các bình phương của 4 số tự nhiên liên tiếp chia 4 dư 2(vô lí)
((a^2+(a+1)^2+(a+2)^2+(a+3)^2) suy ra điều phải chứng minh