Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi 3 số tự nhiên liến tiếp lần lượt là a;a+1;a+2
Ta có: a+a+1+a+2=(a+a+a)+(1+2)
= 3a+3
=3(a+1)
Vì 3 chia hết cho 3 => 3(a+1) chia hết cho 3
=> Tổng 3 số tự nhiên liên tiếp chia hết cho 3 ĐPCM
b) Gọi 4 số tự nhiên liên tiếp lần lượt là a;a+1;a+2;a+3
Theo đề bài ra ta có: a+a+1+a+2+a+3=(a+a+a+a)+(1+2+3)
= 4a+6
Vì 4 chia hết cho 4 => 4a chia hết 4. Nhưng do 6 không chia hết cho 4
=> 4a+6 không chia hết cho 4
Vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4 ĐPCM
a,
Gọi hai số tự nhiên liên tiếp là a và a + 1
Nếu a chia hết cho 2 thì bài toán được chứng minh.
Nếu a không chia hết cho 2 thì a = 2k + 1 (k∈N)
Suy ra: a + 1 = 2k + 1 + 1 = 2k + 2
Ta có: 2k ⋮ 2; 2 ⋮ 2
Suy ra: (2k + 2) ⋮ 2 hay (a + 1) ⋮ 2
Vậy trong hai số tự nhiên liên tiếp, có một số chia hết cho 2
Mik chỉ làm được câu a thôi nhưng vẫn mong bạn ủng hộ ^-^
a) hai số liên tiếp thì sẽ có 1 số chẵn và 1 số lẻ , số chẵn là số chia hết cho 2 nên trong hai số tự nhiên liên tiếp sẽ có 1 số chia hết cho 2
a) Vì có 1 số chẵn và 1 số lẻ trong 2 số tự nhiên liên tiếp nên chia hết cho 2
b) Trong 3 số tự nhiên liên tiếp thì có số cộng các chữ số của số đó chia hết cho3
c) Tổng 2 số tự nhiên liên tiếp là chẵn + lẻ = lẻ nên ko chia hết cho 2
d) 3 số tự nhiên liên tiếp thì có 1 số chia 3 dư 1 , 1 số chia 3 dư 2 , 1 số chia hết cho 3 nên lấy số dư là 1+2=3 chia hết cho 3 nên tổng 3 số tự nhiên liên tiếp chia hết cho 3
Gọi 3 só tự nhiên liên tiếp là
a ; a + 1 ; a + 2
Khi đó a + (a + 1) + (a + 2) = 3a + 6 = 3(a + 2) \(⋮\)3 (đpcm)
Gọi 4 số tự nhiên liên tiếp là :
n ; n + 1 ; n + 2 ; n + 3
Khi đó n + n + 1 + n + 2 + n + 3 = 4n + 6 = 4(n + 1) + 2
=> n + n + 1 + n + 2 + n + 3 không chia hết cho 4 (đpcm)
Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2
\(\Rightarrow n+n+1+n+2=3\left(n+1\right)⋮3\)
Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
\(\Rightarrow n+n+1+n+2+n+3=4\left(n+1\right)+2\)
Ta có \(4\left(n+1\right)⋮4\) ; 2 không chia hết cho 4
\(\Rightarrow4\left(n+1\right)+2\) không chia hết cho 4
Gọi 3 STN liên tiếp là : a ; a + 1 ; a + 2
Tổng 3 STN liên tiếp là :
\(a+\left(a+1\right)+\left(a+2\right)=3a+3⋮3\)
Vậy tổng của 3 STN liên tiếp thì chia hết cho 3
Gọi 4 STN liên tiếp là : b ; b + 1 ; b + 2 ; b + 3
Tổng 4 STN liên tiếp là :
\(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)=4a+6\)
mà 4a + 6 không chia hết cho 4
Vậy tổng của 4 STN liên tiếp thì không chia hết cho 4
a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2
Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)
b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)
c, Hai số tự nhiên liên tiếp là k và k+1
Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2
Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2
(ĐPCM)
d, Ba số tự nhiên liên tiếp là m;m+1 và m+2
Tích chúng: m(m+1)(m+2)
+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3
=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)
Giải:
a) Tổng 3 số tự nhiên liên tiếp có dạng:
a + a + 1 + a + 2 = 3a + 3 = 3(a+1)
=> chia hết cho 3
b) Tổng 4 số tự nhiên liên tiếp có dạng:
a + a + 1 + a + 2 + a + 3 = 4a + 6 = 4(a+1) + 2
=> Không chia hết cho 4
Gọi 3 số tự nhiên là a;a+1;a+2
Tổng của 3 số đó là a+a+1+a+2=3a+3 luôn chia hết cho 3
Gọi 4 số tự nhiên liên tiếp là a;a+1,a+2;a+3
Tổng 4 số đó là 4a+7..ta thấy 4a chia hết cho 4 nhưng 7 chia 4 dư 3...
Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3, tổng 4 số tự nhiên liên tiếp không chia hết cho 4.
Gọi tổng của 3 stn liên tiếp là:n+n+1+n+2
Ta có:
n+n+1+n+2=3n+3 chia hết cho 3 (đpcm)
Gọi tổng của 4 stn liên tiếp là:n+n+1+n+2+n+3
=4n+6 ko chia hết cho 4(đpcm)
b, gọi ba số tự nhiên liên tiếp là n, n+1, n+2 (n thuộc N)
ta có: n+(n+1)+(n+2)
=3n+3
=3(n+1) chia hết cho 3
Vì 3n chia hết cho 3, 3 chia hét cho 3
=>Tổng 3 ố tự nhiên liên tiếp chia hết cho 3
Cứ thé áp dụng cho bài a,c
Nếu e cần c sẽ cho cái bản lưu ý, sau này làm mấy bài này dễ không hà.
a) gọi 2 số tự nhiên liên tiếp là
n ; n+1
n + n + 1 = 2n + 1
vì 2n chia hết cho 2
1 không chia hết cho 2
=> 2n + 1 không chia hết cho 2
vậy tổng 2 số tự nhiên liên tiếp ko chia hết cho 2
Gọi 3 stn liên tiếp là a; a+1; a+2.
Ta có:
a + (a+1) + (a+2) = a + a + 1 + a + 2 = 3a + 3 = 3.(a+1) chia hết cho 3.
Gọi 4 stn liên tiếp là a; a+1; a+2; a+3.
Ta có:
a + (a+1) + (a+2) + (a+3) = a+a+1+a+2+a+3=4a+6=4a+4+2=4.(a+1)+2 chia 4 dư 2 nên không chia hết cho 4
Vậy...
Gọi 3 số tự nhiên liên tiếp là 3k,3k+1,3k+2
Tổng 3 số là: 3k+3k+1+3k+2=9k+3 chia hết cho 3
Gọi 4 số tự nhiên liên tiếp là 4k,4k+1,4k+2,4k+3
Tổng 4 số là: 4k+4k+1+4k+2+4k+3=12k+6 ko chia hết cho 4