Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng 100 số hạng đầu tiên của dãy trên là:
\(\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+\frac{1}{221}+...+\frac{1}{159197}\)
=\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{397.401}\)
=\(\frac{1}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{397.401}\right)\)
=\(\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1`}{17}+...+\frac{1}{397}-\frac{1}{401}\right)\)
=\(\frac{1}{4}.\left(1-\frac{1}{401}\right)
Tổng 100 số hang đầu tiên của dãy là:
1/5 + 1/45 + 1/117 + 1/221 + 1/357+ .... + 1/159197
= 1/1/5 + 1/5.9 + 1/9.13 + 1/13.17 + .... + 1/397.401
=1/4(4/1.5 + 4/5.9 + 4/9.13 + 4/13.17 + .... + 4/397.401)
=1/4(1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + 1/13 - 1/17 + .... + 1/397 - 1/401)
=1/4(1 - 1/401) < 1/4(1 - 0) = 1/4
==> ĐPCM
Tổng 100 số hang đầu tiên của dãy là:
1/5 + 1/45 + 1/117 + 1/221 + 1/357+ .... + 1/159197
= 1/1/5 + 1/5.9 + 1/9.13 + 1/13.17 + .... + 1/397.401
=1/4(4/1.5 + 4/5.9 + 4/9.13 + 4/13.17 + .... + 4/397.401)
=1/4(1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + 1/13 - 1/17 + .... + 1/397 - 1/401)
=1/4(1 - 1/401) < 1/4(1 - 0) = 1/4
==> ĐPCM
nhớ k cho mình nha
*HÌNH NHƯ *
vì tổng mẫu số của dãy số luôn luôn bé hơn 4 mà \(\frac{1}{x}>\frac{1}{y}\left(y>x\right)\)nên tổng của 100 số hạng đầu của dãy số nhỏ hơn \(\frac{1}{4}\)
Tổng 100 số hạng đầu tiên của dãy là:
\(\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+\frac{1}{221}+...+\frac{1}{n.\left(n+4\right)}\left(n\in N,n\ne0\right)\)
=\(\frac{1}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{n.\left(n+4\right)}\right)\)
=\(\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{n}-\frac{1}{n+4}\right)\)
=\(\frac{1}{4}.\left(1-\frac{1}{n+4}\right)
Ta thấy mẫu của dãy có dạng 1.5; 5.9; 9.13; 13.17; 17.21;... tổng quát là (4n-3)(4n+1). Mẫu thứ 100 bằng 397.401. Tổng của 100 số hạng đầu của dãy bằng:
\(\left(1-\dfrac{1}{401}\right):4=\dfrac{1}{4}-\dfrac{1}{1604}< \dfrac{1}{4}\)