Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A= 2 + 22 + 23 + ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).
= 2 x (2 + 1) + 23 x (2 + 1) + ... + 259 x (2 + 1).
= 2 x 3 + 23 x 3 + ... + 259 x 3.
= 3 x ( 2 + 23 + ... + 259).
Vì A = 3 x ( 2 + 23 + ... + 259) nên A chia hết cho 3.
A= (2 +22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260).
= 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).
= 2 x 7 + 24 x 7 + ... + 258 x 7.
= 7 x ( 2 + 24 + ... + 258).
Vì A = 7 x ( 2 + 24 + ... + 258) nên A chia hết cho 7.
A= (21+22+23)+(24+25+26)+...+(258+259+260)
=20(21+22+23)+23(21+22+23)+...+257(21+22+23)
=(21+22+23)(20+23+...+257)
= 14(20+23+...+257) chia hết cho 7
Vậy A chia hết cho 7
gọi 1/41+1/42+1/43+...+1/80=S
ta có :
S>1/60+1/60+1/60+...+1/60
S>1/60 x 40
S>8/12>7/12
Vậy S>7/12
Ta có: A = (2 + 22 + 23) + (24 + 25 + 26) + ..........+ (258 + 259 + 260)
= 2 . (1 + 2 + 4 ) + 24.(1+2+4) + ....... + 258.(1+2+4)
= 2.7 + 24.7 + .........+258.7
= 7.(2+24+.....+258)
Giải:
\(A=\text{( }2^1+2^2+2^3\text{)}+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2^1.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{58}.\left(1+2+2^2\right)\)
\(A=2.7+2^4.7+...+2^{58}.7\)
\(A=7.\left(2+2^4+2^{58}\right)⋮7\)
\(\Rightarrow A=2^1+2^2+2^3+2^4+....+2^{59}+2^{60}\) chia hết cho \(7\)
\(\Rightarrow A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+....+\left(2^{58}+2^{59}+2^{60}\right)\)
\(\Rightarrow A=2^1\left(1+2+4\right)+2^4\left(1+2+4\right)+...+2^{58}\left(1+2+4\right)\)
\(\Rightarrow A=2^1.7+2^4.7+...+2^{58}.7\)
\(\Rightarrow A=7\left(2^1+2^4+...+2^{58}\right)\)
\(\Rightarrow\)A chia hết cho 7 vì tích có chứ thừa số 7
Vậy A chia hết cho 7
Đặt tổng trên là A
Ta có: \(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{59}.\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{59}.3\)
\(=3.\left(2+2^3+...+2^{59}\right)\)chia hết cho 3
=> A chia hết cho 3 (Đpcm).
Ta có :
2+2^2+2^3+2^4+...+2^59+2^60=(2+2^2)+(2^3+2^4)+...+(2^59+2^60)
=2x3+2^3x3+...+2^59x3
=(2+2^3+...+2^59)x3
Vì 3 chia hết cho 3 nên tổng trên chia chiết cho 3 (đpcm)
Bạn ơi, sao 23 + 25 mà lại tới 260?
\(1+4+4^2+4^3+...+4^{59}\)
\(=\left(1+4\right)+\left(4^2+4^3\right)+...+\left(4^{58}+4^{59}\right)\)
\(=\left(1+4\right)+4^2.\left(1+4\right)+...+4^{58}.\left(1+4\right)\)
\(=5+4^2.5+...+4^{58}.5\)
\(=5.\left(1+4^2+...+4^{58}\right)⋮5\)
\(\Rightarrow1+4+4^2+4^3+...+4^{59}⋮5\)
\(1+4+4^2+4^3+...+4^{59}\)
\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{57}+4^{58}+4^{59}\right)\)
\(=\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{57}.\left(1+4+4^2\right)\)
\(=21+4^3.21+...+4^{57}.21\)
\(=21.\left(1+4^3+...+4^{57}\right)⋮21\)
\(\Rightarrow1+4+4^2+4^3+...+4^{59}⋮21\)
\(1+4+4^2+4^3+...+4^{59}\)
\(=\left(1+4+4^2+4^3\right)+...+\left(4^{56}+4^{57}+4^{58}+4^{59}\right)\)
\(=\left(1+4+4^2+4^3\right)+...+4^{56}.\left(1+4+4^2+4^3\right)\)
\(=85+...+4^{56}.85\)
\(=85.\left(1+...+4^{56}\right)\)
2+2^2+...+2^60
=(2+2^2).1+(2+2^2).2^2+...+(2+2^2).2^58
=6.(1+2^2+...+2^58)
=3.2(1+2^2+...+2^58)chia hết cho 3