\(\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

Giải

Điều kiện xác định phương trình:

\(a+b\ne0\) ; \(a+c\ne0\) ; \(b+c\ne0\)

\(\frac{x-ab}{a+b}+\frac{x-ac}{a+c}+\frac{x-bc}{b+c}=a+b+c\)

\(\Leftrightarrow\left(\frac{x-ab}{a+b}-c\right)+\left(\frac{x-ac}{a+c}-b\right)+\left(\frac{x-bc}{b+c}-a\right)=0\)

\(\Leftrightarrow\frac{x-ab-ac-bc}{a+b}+\frac{x-ac-cb-bc}{a+c}+\frac{x-bc-ab-ac}{b+c}=0\)

\(\Leftrightarrow\left(x-ab-bc-ca\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=0\)

\(\Rightarrow\) Phương trình có vô số nghiệm \(\Leftrightarrow\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=0\)

Chẳng hạn ta chọn a = 1 ; b = 1. Để \(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=0\) xảy ra ta chọn c sao cho:

\(\frac{1}{2}+\frac{1}{1+c}+\frac{1}{1+c}=0\Leftrightarrow\frac{2}{1+c}=\frac{-1}{2}\Leftrightarrow c=-5\)

Như vậy phương trình có vô số nghiệm, chẳng hạn khi a = 1 ; b = 1 ; c = -5

1 tháng 1 2017

ĐKXĐ : \(a+b\ne0;a+c\ne0;b+c\ne0.\)

Từ \(\left(1\right)\Leftrightarrow\left(\frac{x-ab}{a+b}-c\right)+\left(\frac{x-ac}{a+c}-b\right)+\left(\frac{x-bc}{b+c}-a\right)=0\)

\(\Leftrightarrow\frac{x-ab-ac-bc}{a+b}+\frac{x-ac-ab-bc}{a+c}+\frac{a-bc-ab-ac}{b+c}=0\)

\(\Leftrightarrow\left(x-ab-bc-ca\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=0\)

\(\left(1\right)\) có vô số nghiệm \(\Leftrightarrow\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=0.\left(2\right)\)

Chẳng hạn ta chọn \(a=1,b=1.\)Để ( 2 ) xảy ra ta chọn c sao cho :

\(\frac{1}{2}+\frac{1}{1+c}+\frac{1}{1+c}=0\Leftrightarrow\frac{2}{1+c}=-\frac{1}{2}\Leftrightarrow c=-5.\)

Như vậy \(\left(1\right)\) có vô số nghiệm , chẳng hạn khi \(a=1,b=1,c=-5.\)

2 tháng 1 2017

....................................................................................................................................................................................................................................

7 tháng 12 2017

Đây nhé: https://olm.vn/hoi-dap/question/77888.html

11 tháng 1 2020

ĐKXĐ: \(x\ne a,x\ne b\). Biến đổi phương trình:

\(\frac{x-a}{b}+\frac{x-b}{a}=\frac{b}{x-a}+\frac{a}{x-b}\Leftrightarrow\frac{a\left(x-a\right)+b\left(x-b\right)}{ab}=\frac{b\left(x-b\right)+a\left(x-a\right)}{\left(x-a\right)\left(x-b\right)}\)

\(\Leftrightarrow\left[a\left(x-a\right)+b\left(x-b\right)\right].\left[\frac{1}{ab}-\frac{1}{\left(x-a\right)\left(x-b\right)}\right]=0\)

Giải \(a\left(x-a\right)+b\left(x-b\right)=0\) được \(x=\frac{a^2+b^2}{a+b}\)( thỏa mãn ĐKXĐ)

Giải \(ab=\left(x-a\right)\left(x-b\right)\) được \(x=0\)\(x=a+b\) ( thỏa mãn ĐKXĐ)

Nhận thấy \(0,a+b,\frac{a^2+b^2}{a+b}\) là 3 nghiệm phân biệt.

11 tháng 1 2020

Nick ảo cj xóa câu hỏi nhé

12 tháng 9 2020

Ta có: \(\frac{x^2}{yz}+\frac{y^2}{xz}+\frac{z^2}{xy}\Rightarrow x^3+y^3+z^3-3xyz=0\Rightarrow\orbr{\begin{cases}x=y=z\\x+y+z=0\end{cases}}\)

Vì nghiệm của phương trình là bộ ba số khác O nên các số a,b,c là ba số khác nhau và khác O

+) Nếu: \(\frac{a}{b-c}=\frac{b}{c-a}=\frac{c}{a-b}=k\ne0\Rightarrow a=k\left(b-c\right);b=k\left(c-a\right);c=k\left(a-b\right)\)

\(\Rightarrow a+b+c=0\Rightarrow a+b=-c\)

Từ: \(\frac{a}{b-c}=\frac{b}{c-a}\Rightarrow\frac{a}{b+a+b}=\frac{b}{-a-b-a}\Rightarrow\left(a+b\right)^2+a^2+b^2=0\)

\(\Rightarrow a=b=0\Rightarrow a=b=c=0\)(loại)

+) Nếu: \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\Rightarrow\frac{a}{b-c}=\frac{b}{a-c}+\frac{c}{b-a}=\frac{b\left(b-a\right)+c\left(a-c\right)}{\left(c-a\right)\left(a-b\right)}\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{b^2-ba+ca-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(1\right)\)

Tương tự ta có: \(\frac{b}{\left(c-a\right)^2}=\frac{c^2-cb+ab-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(2\right);\frac{c}{\left(a-b\right)^2}=\frac{a^2-ac+bc-b^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(3\right)\)

Từ (1),(2) và (3) \(\Rightarrow\frac{a}{\left(b-c^2\right)}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)

Đặt \(m=\frac{a}{\left(b-c\right)^2};n=\frac{b}{\left(c-a\right)^2};p=\frac{c}{\left(a-b\right)^2}\Rightarrow m+n+p=0\)

\(\Rightarrow m^3+n^3+p^3=3mnp\Rightarrow\frac{m^2}{np}+\frac{n^2}{mp}+\frac{p^2}{mn}=3\left(ĐPCM\right)\)

6 tháng 2 2017

a)Áp dụng BDT AM-GM ta có:

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{a}\cdot\frac{1}{b}\cdot\frac{1}{c}}=3\sqrt[3]{\frac{1}{abc}}\)

Nhân theo vế ta có: 

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\)

Dấu "=" xảy ra khi \(a=b=c\)

22 tháng 7 2020

2, (trích đề thi học sinh giỏi Bến Tre-1993)

\(a^3+a^2b+ca^2+b^3+ab^2+b^2c+c^3+c^2b+c^2a=a^2\left(a+b+c\right)+b^2\left(a+b+c\right)+c^2\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

mà a+b+c=0 => (a+b+c)(a2+b2+c2)=0 

=> đpcm

*bài này tui làm tắt, không hiểu ib 

Vừa lm xog bị troll chứ, tuk quá 

\(x-a^2x-\frac{b^2}{b^2-x^2}+a=\frac{x^2}{x^2-b^2}\)

\(\Leftrightarrow\frac{x\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}-\frac{a^2x\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}-\frac{b^2\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}+\frac{a\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}=\frac{x^2\left(b^2-x^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}\)

Khử mẫu : 

\(\Leftrightarrow2x^3b^2-xb^4-x^5-2a^2x^3b^2+a^2xb^4+a^2x^5-b^2x^2+b^4+2ab^2x^2-ab^4-ax^4=x^2b^2-x^4\)

Tự xử nốt, lm bài này muốn phát điên mất. 

30 tháng 1 2017

1/ Ta có: \(\frac{x^4}{1a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)

\(\Leftrightarrow1bx^4\left(a+b\right)+ay^4\left(a+b\right)=ab\left(x^4+2x^2y^2+y^4\right)\)

 \(\Leftrightarrow\left(ay^2-bx^2\right)^2=0\)

\(\Rightarrow\frac{x^2}{1a}=\frac{y^2}{b}=\frac{\left(x^2+y^2\right)}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow\frac{x^{2006}}{1a^{1003}}=\frac{y^{2006}}{b^{1003}}=\frac{1}{\left(a+b\right)^{1003}}\)

 \(\Rightarrow\frac{x^{2006}}{a^{1003}}+\frac{y^{2006}}{b^{1003}}=\frac{2}{\left(a+b\right)^{1003}}\)

26 tháng 4 2017

bài 1 áp dụng bất đẳng thức Cô-si swatch ta có:

\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}\)=1

dấu bằng xảy ra khi nào bạn tự tìm nh