K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2015

24=4x6

Gọi 3 số đó lần lượt là (a-1);a;(a+1)     (a là số lẻ)

Vì a là số lẻ nên a có dạng 2k+1

(2k+1-1)(2k+1)(2k+1+1)=2k(2k+1)(2k+2)=(4k2+2k)(2k+2)=8k3+8k2+4k2+4k=8k3+12k2+4k chia hết cho 4 (1)

2k(2k+1)(2k+2) là tích của 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3

Suy ra 2k(2k+1)(2k+2) chia hết cho 2x3=6  (2)

Từ (1) và (2) => 2k(2k+1)(2k+2) chia hết cho 4x6=24

Hay (a-1)a(a+1) chia hết cho 24 (đpcm)

4 tháng 12 2021

ousbdl

jvdajnvjl

nsdg

ouhqer

kgkrebvjdsjb

vq

wjkgb

Fbovafbeuonasf

1/                                          Bài giải

Tích của 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp.
Trong 2 số chẵn liên tiếp chắc chắn có 1 số chia hết cho 4=> số còn lại chia hết cho 2
=> Tích 4 số tự nhiên liên tiếp chia hết cho 8. ﴾1﴿
Trong 4 số tự nhiên liên tiếp chắc chẵn có 1 số chia hết cho 3 ﴾2﴿
Từ ﴾1﴿ và ﴾2﴿ => Tích 4 số tự nhiên liên tiếp chia hết cho 3 và 8.
Mà 3 và 8 nguyên tố cùng nhau => Tích 4 số tự nhiên liên tiếp chia hết cho 3.8
=>Tích 4 số tự nhiên liên tiếp chia hết cho 24

2/                                       Bài giải

Vì trong 4 số tự nhiên chẵn có ít nhất 1 số chia hết cho 4
Và 2 số còn lại chia hết cho 2
=> Chia hết cho 2 x 2 x 4 = 16
Mà trong 3 số đó phải có 1 số chia hết cho 3
= > Tích chia hết cho : 3 . 16 = 48
=> Tích của 3 số tự nhiên chẵn liên tiếp thì chia hết cho 48.

3/                                      Bài giải

‐ tập hợp con không chứa phần tử nào: tập rỗng => có 1 tập hợp
‐ tập hợp con có 1 phần tử là : {a}; {b}; {c} ; {d} => có 4 tập hợp
‐ tập hợp có 2 phần tử là: {a;b}; {a;c}; {a;d}; {b;c}; {b;d}; {c;d}; => có 6 tập hợp
‐ tập hợp có 3 phần tử là: {a;b;c}; {a;b;d} ; {a;c;d}; {b;c;d} => có 4 tập hợp
‐ tập hợp có 4 phần tử là chính A = {a;b;c;d} => có 1 tập hợp
Vậy có tất cả là 1 + 4 + 6 + 4 + 1 = 16 tập hợp

18 tháng 8 2017

3/Các tập hợp con của A là : 

{a},{b},{c}

{a;b},{a;c},{b;c}

{a;b;c}

k mình nha

6 tháng 9 2015

nhìu dzữ @@

6 tháng 9 2015

 Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3 
nếu k chia hết cho 4 thì -> điều phài cm 
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm 
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm 
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm 

Chứng minh tổng 2 số lẻ chia hết cho 2 .

Ta gọi 2 số lẻ là 2k + 1 và 2q + 1.

=> tổng của 2 số lẻ là :

    2k + 1 + 2q + 1 = 2(k + q) + 2

                               = 2(k + p + 2) chia hết cho 2.

Vậy...

Còn chứng minh 3 số liên tiếp chia hết cho 3 bạn gọi các số là 3k + 1 , 3k + 2 , 3k + 3 rồi tự nghĩ nha.

Gọi tổng 3 số tự nhiên liên tiếp là : x + ( x + 1 ) + ( x + 2 ) = 3x + 3

Mà 3x + 3 là số lẻ < = > x là số chẵn hay x chia hết cho 2 ( 1 )

Tương tự , ta có tích của chúng là : x. ( x + 1 ) x ( x + 2 ) = x3 x 3 chia hết cho 3

Từ ( 1 ) <=> x3 chia hết cho 23 ( chia hêt cho 8 )

Vậy với x + ( x + 1 )  (x + 2 ) là số lẻ thì x . ( x + 1 ) x ( x + 2 ) chia hết cho 24

23 tháng 6 2016

này câu hỏi là j

28 tháng 7 2018

2 số lẻ liên tiếp là 
2k+1;2k+3(k thuoc N) 
tổng là: 
2k+1+2k+3
=4k+4 
=4(k+4) 
chia het cho 4

chắc vậy .

28 tháng 7 2018

a) Gọi 2 số tự nhiên lẻ liên tiếp là 2k + 1 ; 2k + 3

=> 2k + 1 + 2k + 3 = ( 2k + 2k ) + ( 1 + 3 ) = 4k + 4 \(⋮\)4 ( Vì 4k và 4 đều \(⋮\)4 )

b) Gọi 3 số tự nhiên chẵn liên tiếp là 2k ; 2k + 2 ; 2k + 4

=> 2k + 2k + 2 + 2k + 4 = ( 2k + 2k + 2k ) + ( 2 + 4 ) = 6k + 6 \(⋮\)6 ( Vì 6k và 6 đều \(⋮\)6 )

31 tháng 10 2017

Ta có  trong hai số tự nhiên liện tiếp thì lúc nào cũng có một số chẵn và một số lẻ số chẵn đó sẽ chia hết cho 2 (đpcm)
b, 3 số tự nhiên liên tiếp sẽ có dangh 3k;3k+1;3k+2(với k thuộc N)
      Tích của 3 số đó là : 3k + 3k+1 +3k +2 = 3.(3k+3) chia hết cho 3( đpcm)

31 tháng 10 2017

a)Gọi 2 số tự nhiên liên tiếp đó là a và b 

Do là 2 STN liên tiếp nên a hoặc b sẽ là số chẵn

=> ab chia hết cho 2

 Vậy.............................

b) Gọi 3 số tự nhiên liên tiếp là 3k; 3k+1; 3k+2  ( k \(\in\) N)

 Mà 3k luôn chia hết cho 3

=> 3k(3k+1)(3k+2) luôn chia hết cho 3

     Vậy......................................

2 tháng 10 2016

a . Ta có : Vì hai số liên tiếp chiaheets cho 2 

=> số lẻ x số chẵn sẽ chia hết cho 2

vì 1 số chẵn x bất kì số nào cũng là số chẵn

13 tháng 10 2018

Gọi 2 số nguyên liên tiếp là:  và  a+1

Tích của chúng là:  A  =  a(a+1)

  • Nếu:  a = 2k thì chia hết cho 2  
  • Nếu:  a = 2k+1 thì:  a+1 = 2k+2   chia hết cho 2  =>  A  chia hết cho 2

=>  đpcm