K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2015

Gọi 4 số tự nhiên liên tiếp đó là n, n + 1, n+ 2, n + 3 (n thuộc N). 

Ta có:

 n(n + 1)(n + 2)(n + 3) + 1 

= n.(n + 3)(n + 1)(n + 2) + 1 

= (n2 + 3n)( n2 + 3n + 2) + 1 (*) 

Đặt n2 + 3n = t (t thuộc N) thì thay vào (*), ta có:

t( t + 2 ) + 1 

= t2 + 2t + 1 

= ( t + 1 )2 

= (n2 + 3n + 1)2 

Vì n thuộc N nên n2 + 3n + 1 thuộc N 

Vậy n(n + 1)(n + 2)(n + 3) + 1 là số chính phương

23 tháng 7 2018

a) Gọi 4 số tự nhiên liên tiếp đó là: n ; n+1; n+2; n+3 (n thuộc N)

Ta có: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)

    \(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\left(\cdot\right)\)

Đặt n2 + 3n = t (t thuộc N) thì \(\left(\cdot\right)=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\)

Vì n thuộc N nên (n2+3n+1) thuộc N

=> Vậy n(n+1)(n+2)(n+3)+1 là 1 số chính phương

24 tháng 7 2018

tính giá trị của biểu thức 

a, 2x^2(ax^2+2bx+4c)=6x^4-20x^3-8x^2 với mọi x

b, (ax+b)(x^2-cx+2)=x^3+x^2-2 với mọi x

7 tháng 10 2016

dat 4 so tn lie tiep co dang la a,a+1,a+2,a+3

a(a+1)(a+2)(a+3)+1=(a^2+3a)(a^2+3a+2)+1

=(a^2+3a+1-1)(a^2+3a+1+1)+1

(a^2+3a+1)^2-1+1=(a^2+3a+1)^2 la so cp

7 tháng 10 2016

gọi 4 số tự nhiên liên tiếp là a;a+1;a+2;a+3. điều kiện : a\(\in\)N .

Ta xét: a(a+1)(a+2)(a+3) +1 = [a(a+3)][(a+1)(a+2)] +1

                                             = (a2+3a)(a2+3a+2) +1

                                             = (a2+3a+1-1)(a2+3a+1+1) +1

                                             = (a2+3a+1)2 - 1+1

                                             = (a2+3a+1)=> Điều phải chứng minh

                                        

Gọi 4 số tự nhiên, liên tiếp đó là n, n+1, n+2, n+3\(\left(n\in N\right)\)

Theo đề bài ra chúng ta có : n(n+1)(n+2)(n+3) + 1 = n.(n+3)(n+1)(n+2)+1

= (n2+3n)(n2+3n+2)+ 1 (*) Đặt n2+3n = t\(\left(t\in N\right)\)thì (*) = t(t+2)+1 = t2+2t+1 = (t+1)2

= (n2+3n+1)2 Vì\(n\in N\)nên suy ra : (n2+3n+1)\(\in N\)

=> Vậy n(n+1)(n+2)(n+3) là 1 số chính phương. 

10 tháng 10 2018

       \(a\left(a+1\right)\left(a+2\right)\left(a+3\right)+1\)

\(=\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)

\(=\left(a^2+3a+1-1\right)\left(a^2+3a+1+1\right)+1\)

\(=\left(a^2+3a+1\right)^2-1+1=\left(a^2+3a+1\right)^2\)

26 tháng 6 2018

ta có n(n+5)-(n-3)(n+2)

=  n2+5n-(n2-n-6)

=n2+5n-n2+n+6

= 6n-6

=6(n-1)

=> 6(n-1) chia hết cho 6

hay n(n+5)-(n-3)(n+2) cũng chia hết cho 6

nhớ k giùm mình nha

25 tháng 6 2018

Mong các bạn sớm giải ra, mình cần cho buổi chiều ngày mai gấp, nếu bạn nào giải được mình sẽ k đúng cho và kết bạn vs bạn đó nha! Cảm phiền các bạn !!!!!!! Giúp mình với nha!

4 tháng 10 2018

Đặt 4 số tự nhiên liên tiếp là: n-1;n;n+1;n+2( n>0)

Ta có:

\(\left(n-1\right)n\left(n+1\right)\left(n+2\right)+1=\left(n^2+n\right)\left(n^2+n-2\right)+1.\)

Gọi t = n2+n ta có:

\(t\left(t-2\right)+1=t^2-2t+1=\left(t-1\right)^2\)

                                                      \(=\left(n^2+n\right)^2\left(ĐPCM\right)\)

\(\text{Vậy ..........}\)

4 tháng 10 2018

Gọi 4 stn liên tiếp là x;x+1;x+2;x+3 (x thuộc N)

Đặt A=\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=x\left(x+3\right)\left(x+1\right)\left(x+2\right)+1=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)

Đặt x2+3x+1=t, ta có:

\(A=\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2=\left(x^2+3x+1\right)^2\)

=>đpcm

14 tháng 9 2016

 Gọi hai số chính phương liên tiếp đó là k2 và (k+1)2

Ta có:

k2+(k+1)2+k2.(k+1)2

=k2+k2+2k+1+k4+2k3+k2

=k4+2k3+3k2+2k+1

=(k2+k+1)2

=[k(k+1)+1]2 là số chính phương lẻ.

9 tháng 2 2020

làm nhanh Cho nick face thì làm