Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài đầy đủ: Chứng minh rằng nếu \(a,b,c\) và \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) là các số hữu tỉ thì \(\sqrt{a},\sqrt{b},\sqrt{c}\) cũng là các số hữu tỉ.
\(-\text{Theo bài ra, t có: }\sqrt{a}+\sqrt{b}+\sqrt{c}=x\text{ với }x\in Q\)
\(\Rightarrow x-\sqrt{a}=\sqrt{b}+\sqrt{c}\)
\(\Rightarrow\left(x^2+a-b-c\right)-2x\sqrt{a}=2\sqrt{bc}\)
\(\Rightarrow\left(x^2+a-b-c\right)+4ax^2-4x\left(x^2+a-b-c\right)\sqrt{a}=4bc\)
\(\Rightarrow\sqrt{a}=\dfrac{\left(x^2+a-b-c\right)^2+4ax^2-4bc}{4x\left(x^2+a-b-c\right)}\)
\(-\text{Vì }a;b;c;x\in Q\text{ nên }\sqrt{a}\in Q\)
\(-\text{Tương tự, }\left(a;b;c\text{ có vai trò như nhau }\right),\sqrt{b};\sqrt{c}\text{ cũng là số hữu tỉ.}\)
Ta có:
\(\left(\sqrt{a}+\sqrt{b}\right)^2=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\left(\sqrt{a}\right)^2+\sqrt{a}.\sqrt{b}+\sqrt{b}.\sqrt{a}+\left(\sqrt{b}\right)^2\)
\(=a+b+2\sqrt{a}.\sqrt{b}\)
\(=\left(\sqrt{a+b}\right)^2+2\sqrt{a}.\sqrt{b}\)
Vì \(\sqrt{a}\ge0,\sqrt{b}\ge0\) nên \(2\sqrt{a}.\sqrt{b}\ge0\) cho nên
\(\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a+b}\right)^2=2\sqrt{a}.\sqrt{b}\ge0\).
Tức là \(\left(\sqrt{a}+\sqrt{b}\right)^2\ge\left(\sqrt{a+b}\right)^2,\) suy ra \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)
Đẳng thức \(\sqrt{a}+\sqrt{b}=\sqrt{a+b}\) xảy ra chỉ khi \(\sqrt{a}.\sqrt{b}=0\)
tức là khi \(\sqrt{a}=0\) hoặc \(\sqrt{b}=0\), hay là \(a=0\) hoặc \(b=0\).
Bạn j ơi. Bạn giúp mk trả lời bài mk đăng mà chưa ai chả lời đk ko bạn. Mk cần gấp lắm bạn
Đặt x=\(\sqrt{a}+\sqrt{b}+\sqrt{c}\)
\(\Rightarrow x-\sqrt{a}=\sqrt{b}+\sqrt{c}\)
\(\Rightarrow\left(x^2+a-b-c\right)-2x\sqrt{a}=2\sqrt{bc}\)
\(\Rightarrow\left(x^2+a-b-c\right)^2+4ax^2-4x\left(x^2+a-b-c\right)\sqrt{a}=4bc\)
\(\Rightarrow\sqrt{a}=\dfrac{\left[\left(x^2+a-b-c\right)+4ax^2-4bc\right]}{\left[4x\left(x^2+a-b-c\right)\right]}\)\(\in Q\)
Vậy \(\sqrt{a};\sqrt{b};\sqrt{c}\) là các số hữu tỷ
Câu hỏi của ka ding - Toán lớp 9 - Học toán với OnlineMath Em xem lbaif ở link này nhé!
\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)
\(\Leftrightarrow a+b+2\sqrt{ab}\ge a+b\)
\(\Leftrightarrow a+b+2\sqrt{ab}-a-b\ge0\)
\(\Leftrightarrow2\sqrt{ab}\ge0\) luôn luôn đúng với \(a,b\ge0\)
=> đpcm
cho a = 4; b = 9; c = 484