Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\sqrt{22-12\sqrt{2}}+\sqrt{6+4\sqrt{2}}=\sqrt{\left(3\sqrt{2}-2\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}\\ =3\sqrt{2}-2+2+\sqrt{2}=4\sqrt{2}\\ b,\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n}-\sqrt{n+1}}{n-n-1}\\ =\dfrac{\sqrt{n}-\sqrt{n+1}}{-1}=\sqrt{n+1}-\sqrt{n}\)
a) \(\sqrt{22-12\sqrt{2}}+\sqrt{6+4\sqrt{2}}\)
\(=\sqrt{\left(3\sqrt{2}-2\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}\)
\(=3\sqrt{2}-2+2+\sqrt{2}=4\sqrt{2}\)
b) \(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)
\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}...+\dfrac{1}{\sqrt{79}+\sqrt{80}}\)
\(=\left(\sqrt{2}-\sqrt{1}\right)+\left(\sqrt{3}-\sqrt{2}\right)+...+\left(\sqrt{80}-\sqrt{79}\right)\)
\(=\sqrt{80}-\sqrt{2}\)
Đến đây bấm máy rồi đối chiếu kết quả cho nhanh, hoặc nếu em thik "màu mè" hơn thì giả sử lớn hơn rồi biến đổi tương đương thôi :)
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=\left(4+\sqrt{15}\right)\left(4-2\sqrt{15}\right).2\)
\(=\left(4^2-15\right).2\)
\(=2\left(ĐPCM\right)\)
\(A=\sqrt{4+\sqrt{4+\sqrt{4}+...}}\\ \)>0
a)
\(A=\sqrt{4+A}\Leftrightarrow A^2=4+A\Leftrightarrow A^2-A-4=0\)
\(\Delta=1+16=17\)
\(A_1=\dfrac{1+\sqrt{17}}{2}< \dfrac{1+5}{2}=3\)
\(A_2=\dfrac{1-\sqrt{17}}{2}\)<0 loại
Vậy A < 3
b) Chứng minh quy nạp
(13+23+.....+n3)=(1+2+3+...+n)2=> KL
b).đặt \(A=\sqrt{1^3+2^3+3^3+...+n^3}\)
ta có hằng đẳng thức: \(x^3-x=\left(x-1\right)x\left(x+1\right)\)
\(1^3+2^3+3^3+...+n^3=1^3-1+2^3-2+3^3-3+...+n^3-n+\left(1+2+3+...+n\right)\)\(=0+1.2.3+2.3.4+...+\left(n-1\right)n\left(n+1\right)+\dfrac{n\left(n+1\right)}{2}\)(*)
Xét \(B=1.2.3+2.3.4+...+\left(n-1\right)n\left(n+1\right)\)
\(4B=1.2.3.4+2.3.4.4+...+\left(n-1\right)n\left(n+1\right).4=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right)n\left(n+1\right)\left(n+2\right)-\left(n-2\right)\left(n-1\right)n\left(n+1\right)\)
\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow B=\dfrac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)
từ (*): \(1^3+2^3+...+n^3=\dfrac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}+\dfrac{n\left(n+1\right)}{2}\)
\(=\dfrac{n\left(n+1\right)}{2}\left[\dfrac{\left(n-1\right)\left(n+2\right)}{2}+1\right]=\dfrac{n\left(n+1\right)}{2}.\dfrac{n^2+n-2+2}{2}=\left[\dfrac{n\left(n+1\right)}{2}\right]^2\)
do đó \(A=\sqrt{\left[\dfrac{n\left(n+1\right)}{2}\right]^2}=\dfrac{n\left(n+1\right)}{2}=1+2+...+n\)(đpcm)