Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Hướng dẫn cách giải bằng máy tính cầm tay:
Gán các giá trị :
Sử dụng chức năng giải hệ phương trình bậc nhất 2 ẩn
{Aa+Bb=Ca+b=dAa+Bb=Ca+b=dvới d là giá trị các đáp án
Giải hpt ta được:⎧⎨⎩a=13b=16⇒a+b=12
bạn ơi nếu đã trả lời thì trả lời tử tế giúp mình với chứ ạ
\(\sqrt{\frac{3+\sqrt{5}}{3-\sqrt{5}}}+\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}\)
\(=\frac{3+\sqrt{5}}{2}+\frac{3-\sqrt{5}}{2}=3\)
PS: Nhân lượng liên hiệp
Đặt \(\hept{\begin{cases}\sqrt{3-\sqrt{5}}=A\\\sqrt{3+\sqrt{5}}=B\end{cases}}\)
Ta có A.B = 2
(A + B)2 = 6 + 4 = 10 => A + B = \(\sqrt{10}\)
Ta có cái ban đầu
= A2 B + AB2 = AB(A + B) = \(2\sqrt{10}\)
ĐKXĐ : \(x\ge1\)
\(\sqrt{x+2\sqrt{x-1}}-\sqrt{x-2\sqrt{x-1}}=\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}\)
\(=\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|\)
Xét các trường hợp :
1. Nếu \(1\le x\le2\)thì \(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1-\left(1-\sqrt{x-1}\right)=2\sqrt{x-1}\le2\)
2. Nếu \(x>2\) thì
\(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1-\sqrt{x-1}+1=2\)
Gộp hai trường hợp có đpcm.
a, ĐK \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)
\(P=\frac{x-1}{\sqrt{x}}:\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)
Ta thấy \(P=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}>0\forall x>0,x\ne1\)
b, P=\(\frac{x+2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\frac{2}{2+\sqrt{3}}+2\sqrt{\frac{2}{2+\sqrt{3}}}+1}{\sqrt{\frac{2}{2+\sqrt{3}}}-1}\)
=\(\frac{\frac{4}{\left(\sqrt{3}+1\right)^2}+2.\sqrt{\left(\frac{2}{\left(\sqrt{3}+1\right)^2}\right)}+1}{\sqrt{\left(\frac{2}{2+\sqrt{3}}\right)^2}-1}=\frac{\frac{4}{\left(\sqrt{3}+1\right)^2}+2.\frac{2}{\sqrt{3}+1}+1}{\frac{2}{\sqrt{3}+1}-1}\)
\(=\frac{12+6\sqrt{3}}{1-3}=-6-3\sqrt{3}\)
Mọi số n không là số chính phương thì \(\sqrt{n}\)là số vô tỉ nên
\(\sqrt{2}\)và \(\sqrt{3}\)là số vô tỉ
Suy ra \(\sqrt{2}+\sqrt{3}\)là số vô tỉ
Đặt \(x=\sqrt{2}+\sqrt{3}\)
Giả sử x là số hữu tỉ , nghĩa là \(x=\frac{p}{q}\left(p,q\in N,q\ne0\right)\)
Ta có : \(\frac{p}{q}=\sqrt{2}+\sqrt{3}\)
\(\Leftrightarrow\frac{p^2}{q^2}=\left(\sqrt{2}+\sqrt{3}\right)^2\)
\(\Leftrightarrow\frac{p^2}{q^2}-5=2\sqrt{6}\) ( vô lí )
Vì \(\frac{p^2}{q^2}\) là số hữu tỉ và \(2\sqrt{6}\) là số vô tỉ
Vậy \(x=\sqrt{2}+\sqrt{3}\) không phải là số hữu tỉ
\(\Rightarrow x=\sqrt{2}+\sqrt{3}\) lá số vô tỉ
Chúc bạn học tốt !!!
Đk: tự xác định
\(pt\Leftrightarrow\sqrt{x+3}-\left(\frac{1}{3}x+1\right)+\sqrt{6-x}-\left(-\frac{1}{3}x+2\right)-\sqrt{\left(x+3\right)\left(6-x\right)}=0\)
\(\Leftrightarrow\frac{x+3-\left(\frac{1}{3}x+1\right)^2}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{6-x-\left(-\frac{1}{3}x+2\right)^2}{\sqrt{6-x}-\frac{1}{3}x+2}-\sqrt{\left(x+3\right)\left(6-x\right)}=0\)
\(\Leftrightarrow\frac{-\frac{1}{9}\left(x+3\right)\left(x-6\right)}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{-\frac{1}{9}\left(x+3\right)\left(x-6\right)}{\sqrt{6-x}-\frac{1}{3}x+2}-\frac{\left(x+3\right)\left(x-6\right)}{\sqrt{-\left(x+3\right)\left(x-6\right)}}=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-6\right)\left(\frac{-\frac{1}{9}}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{-\frac{1}{9}}{\sqrt{6-x}-\frac{1}{3}x+2}-\frac{1}{\sqrt{-\left(x+3\right)\left(x-6\right)}}\right)=0\)
Dễ thấy:\(\frac{-\frac{1}{9}}{\sqrt{x+3}+\frac{1}{3}x+1}+\frac{-\frac{1}{9}}{\sqrt{6-x}-\frac{1}{3}x+2}-\frac{1}{\sqrt{-\left(x+3\right)\left(x-6\right)}}< 0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-6=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-3\\x=6\end{cases}}\)
1,44224957+2,080083823=3,522333393 \(\in\)I
Liên quan gì bạn @Tam Mai, chứng minh chứ không phải bấm máy tính