\(\frac{1}{2}\)+  \(\frac{1}{2^2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}...+\frac{1}{2^{20}}\)

\(2S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\)

Ta lấy \(2S-S\)được

\(1-\frac{1}{2^{19}}\)

\(\Rightarrow S=1-\frac{1}{2^{19}}< 1\left(ĐPCM\right)\)

23 tháng 4 2017

\(S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{20}}< 1\)

\(2S=1+\frac{1}{2}+...+\frac{1}{2^{19}}\)

\(=>2S-S=1-\frac{1}{2^{19}}\)

\(=>S=1-\frac{1}{2^{19}}< 1\left(đpcm\right)\)

4 tháng 5 2017

ta có 

S = \(\frac{1}{2}\)\(\frac{1}{2^2}\)\(\frac{1}{2^3}\)+ .....+\(\frac{1}{20^{20}}\)

2S= 1 + \(\frac{1}{2}\)\(\frac{1}{2^2}\)\(\frac{1}{2^3}\)+ .....+\(\frac{1}{2^{19}}\)

S = 2S-S= 1 - \(\frac{1}{2^{19}}\)<1 

Vậy S < 1 

^_^ chúc bn học tốt

24 tháng 3 2018

a)Ta có: \(\frac{3}{1.4}=\frac{4-1}{1.4}=1-\frac{1}{4}\)

\(\frac{3}{4.7}=\frac{7-4}{4.7}=\frac{1}{4}-\frac{1}{7}\)

... . . . .

\(\frac{3}{n\left(n+3\right)}=\frac{1}{n}-\frac{1}{n+3}\)

\(\Leftrightarrow S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+3}< 1^{\left(đpcm\right)}\)

b) Ta có: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

   \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)

Suy ra \(\frac{2}{5}< S\) (1)

Ta lại có: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)

Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)

Từ đó suy ra S < 8/9

Từ (1) và (2) suy ra đpcm

28 tháng 4 2019

\(\Rightarrow2S=1+\frac{1}{2}+...+\frac{1}{2^{19}}\)

\(\Rightarrow2S-S=\left(1+\frac{1}{2}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{20}}\right)\)

\(\Rightarrow S=1-\frac{1}{2^{20}}< 1\)

28 tháng 4 2019

Ta có: S = \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{20}}\)

    1/2S = \(\frac{1}{2}.\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{20}}\right)\)

   1/2S = \(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{21}}\)

   1/2S - S = \(\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{21}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{20}}\right)\)

  -1/2S = \(\frac{1}{2^{21}}-\frac{1}{2}\)

       S = \(\left(\frac{1}{2^{21}}-\frac{1}{2}\right):\left(-\frac{1}{2}\right)\)

       S =\(\frac{1}{2^{21}}:\left(-\frac{1}{2}\right)-\frac{1}{2}:\left(-\frac{1}{2}\right)\)

      S = \(-\frac{1}{2^{20}}+1=1-\frac{1}{2^{20}}< 1\)

25 tháng 2 2017

2.a) Vào question 126036

b) Vào question 68660

Ta có : S =\(\frac{1}{2^2}\)\(+\)\(\frac{1}{3^2}\)\(+\)...\(+\)\(\frac{1}{9^2}\)

              = \(\frac{1}{2.2}\)\(+\)\(\frac{1}{3.3}\)\(+\)...\(+\)\(\frac{1}{9^2}\)

\(\Rightarrow\)S > \(\frac{1}{2.3}\)\(+\)\(\frac{1}{3.4}\)\(+\)...\(+\)\(\frac{1}{9.10}\)

            = \(\frac{1}{2}\)\(-\)\(\frac{1}{3}\)\(+\)\(\frac{1}{3}\)\(-\)\(\frac{1}{4}\)\(+\)..\(+\)\(\frac{1}{9}\)\(-\)\(\frac{1}{10}\)

            = \(\frac{1}{2}\)\(-\)\(\frac{1}{10}\)

\(\Rightarrow\)S <  \(\frac{1}{1.2}\)\(+\)\(\frac{1}{2.3}\)\(+\)...\(+\)\(\frac{1}{8.9}\)

            =\(1\)\(-\)\(\frac{1}{2}\)\(+\)\(\frac{1}{2}\)\(-\)\(\frac{1}{3}\)\(+\)...\(+\)\(\frac{1}{8}\)\(-\)\(\frac{1}{9}\)

            = \(1\)\(-\)\(\frac{1}{9}\)\(\frac{8}{9}\)

Vậy \(\frac{2}{5}\)< S < \(\frac{8}{9}\)(đpcm)

Chúc bạn học tốt

4 tháng 5 2015

a)\(S=\left(\frac{1}{5}+\frac{1}{13}\right)+\left(\frac{1}{61}+\frac{1}{62}+\frac{1}{63}\right)<\left(\frac{1}{5}+\frac{1}{5}\right)+\left(\frac{1}{60}+\frac{1}{60}+\frac{1}{60}\right)=\frac{2}{5}+\frac{1}{20}=\frac{9}{20}<\frac{10}{20}=\frac{1}{2}\)b)  \(2.S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\)

=> 2S - S = \(\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\right)\)

=> S = \(1-\frac{1}{2^{20}}<1\) đpcm