K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề thi tỉnh Hưng Yên 2015-2016

Bạn lên mạng check đáp án cũng được mà

Học tốt!!!!!!!!!

NV
13 tháng 11 2018

\(x=1+\sqrt[3]{2}+\sqrt[3]{4}\Rightarrow x-1=\sqrt[3]{2}+\sqrt[3]{4}\)

\(x^3-3x^2-3x+1=\left(x-1\right)^3-6x+4\)

Ta có \(\left(x-1\right)^3=\left(\sqrt[3]{2}+\sqrt[3]{4}\right)^3=2+3.\sqrt[3]{8}\left(\sqrt[3]{2}+\sqrt[3]{4}\right)+4\)

\(=6+6\left(\sqrt[3]{2}+\sqrt[3]{4}\right)=6+6\left(x-1\right)=6x\)

\(\Rightarrow x^3-3x^2-3x+1=\left(x-1\right)^3-6x+4=6x-6x+4=4\)

Mà 4 là số chính phương nên P là số chính phương

10 tháng 12 2015

phan tích P hoặc thay x vào rồi tách ra

16 tháng 7 2015

\(P=\left(x-1\right)^3-6x+4=\left(\sqrt[3]{2}+\sqrt[3]{4}\right)^3-6\left(1+\sqrt[3]{2}+\sqrt[3]{4}\right)+4\)

\(=\left(2+4+3.\sqrt[3]{2}\sqrt[3]{4}\left(\sqrt[3]{2}+\sqrt[3]{4}\right)\right)-6\left(\sqrt[3]{2}+\sqrt[4]{4}\right)-6+4\)

\(=6+3.\sqrt[3]{8}\left(\sqrt[3]{2}+\sqrt[3]{4}\right)-6\left(\sqrt[3]{2}+\sqrt[3]{4}\right)-6+4\)

\(=4\)

\(=2^2\)

14 tháng 1 2017

2

ai tk mk

mk tk lại

mk hứa

23 tháng 5 2018

Với mọi n nguyên dương ta có:

\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=1\Rightarrow\frac{1}{\sqrt{n+1}+\sqrt{n}}=\sqrt{n+1}-\sqrt{n}\)

Với k nguyên dương thì 

\(\frac{1}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k+1}+\sqrt{k}}\Rightarrow\frac{2}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k-1}+\sqrt{k}}+\frac{1}{\sqrt{k+1}+\sqrt{k}}=\sqrt{k}-\sqrt{k-1}+\sqrt{k+1}-\sqrt{k}\)

\(=\sqrt{k+1}-\sqrt{k-1}\)(*)

Đặt A = vế trái. Áp dụng (*) ta có:

\(\frac{2}{\sqrt{1}+\sqrt{2}}>\sqrt{3}-\sqrt{1}\)

\(\frac{2}{\sqrt{3}+\sqrt{4}}>\sqrt{5}-\sqrt{3}\)

...

\(\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-\sqrt{79}\)

Cộng tất cả lại

\(2A=\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{3}+\sqrt{4}}+....+\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-1=8\Rightarrow A>4\left(đpcm\right)\)

3. 

Theo bất đẳng thức cô si ta có: 

\(\sqrt{b-1}=\sqrt{1.\left(b-1\right)}\le\frac{1+b-1}{2}=\frac{b}{2}\Rightarrow a.\sqrt{b-1}\le\frac{a.b}{2}\)

Tương tự \(\Rightarrow b.\sqrt{a-1}\le\frac{a.b}{2}\Rightarrow a.\sqrt{b-1}+b.\sqrt{a-1}\le a.b\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=2\)