\(P\left(x\right)=ax^3+bx^2+cx+d\)có giá trị nguyên với mọi x ngu...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2016

bài................khó...............quá....................mà...............trời...........lại...............rét................tick..................ủng..............hộ.................mình.................nha.............

27 tháng 1 2016

sao bat chuoc tao ha NGuyen ding anh

25 tháng 4 2018

+) ta có: \(f\left(0\right)=a.0^3+b.0^2+c.0+d=d\)

        \(f\left(1\right)=a.1^3+b.1^2+c.1+d=a+b+c+d\)

       \(f\left(2\right)=a.2^3+b.2^2+c.2+d=8a+4b+2c+d\)

Nếu f(x) có g/trị nguyên vs mọi x \(\Rightarrow\) d ; a+b+c+d ; 8a+4b+2c+d nguyên

Do d nguyên \(\Rightarrow\) a+b+c nguyên

                             (a+b+c+d)+(a+b+c+d)+2b nguyên\(\Rightarrow\)2b nguyên\(\Rightarrow\)6b nguyên 

+) ta lại có: \(f\left(0\right)=a.0^3+b.0^2+c.0+d=d\)

mà f(0) nguyên nên d nguyên

   \(f\left(1\right)=a.1^3+b.1^2+c.1+d=a+b+c+d\)

 \(f\left(-1\right)=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d=-a+b-c+d\)

\(\Rightarrow f\left(1\right)+f\left(-1\right)=2b+2d\)

\(\Rightarrow2b=f\left(1\right)+f\left(-1\right)-2d\)\(\Rightarrow\)\(2b\)nguyên

mặt khác: f(2)= 8a+4b+2c+d 

     \(\Rightarrow\) f(2) - 2f(1) = 6a-2b+d

     \(\Rightarrow\) 6a = f(2) - 2f(1)+2b-d

     \(\Rightarrow\) 6a nguyên

vậy f(x) = ax^3 + bx^2 + cx + d có giá trị nguyeenvs mọi x nguyên khi và chỉ khi 6a ; 2b ; a+b+c và d là các số nguyên

Bài này có 2 vế nha bn, mk c/m hết r đó, nếu bn thấy dài wa thì thu gọn lại nha! chúc bn hc tốt!

25 tháng 4 2018

nhìn thì dài nhưng ko dài lắm đâu, tại mk dùng cỡ chữ to vài chỗ nên nó dài thôi. bài lm ko dài bn cứ lm đi, đừng ngại!

8 tháng 3 2019

\(f\left(x\right)=ax^2+bx+c\Rightarrow\hept{\begin{cases}f\left(0\right)=c\\f\left(1\right)=a+b+c\\f\left(2\right)=4a+2b+c\end{cases}}\)

\(f\left(0\right)\) nguyên \(\Rightarrow c\) nguyên \(\Rightarrow\hept{\begin{cases}2a+2b\\4a+2b\end{cases}}\) nguyên

\(\Rightarrow\left(4a+2b\right)-\left(2a+2b\right)=2a\)(nguyên)

\(\Rightarrow2b\) nguyên

\(\Rightarrowđpcm\)

8 tháng 3 2019

\(36-y^2\le36\)

\(8\left(x-2010\right)^2\ge0;8\left(x-2010\right)^2⋮8\)

\(\Rightarrow\hept{\begin{cases}0\le8\left(x-2010\right)^2\le36\\8\left(x-2010\right)^2⋮8\\8\left(x-2010\right)^2\in N\end{cases}}\)

Giai tiep nhe

24 tháng 2 2020

Thử nha :33

Do a không chia hết cho 3 nên \(\orbr{\begin{cases}a=3k+1\\a=3k+2\end{cases}\left(k\inℤ\right)}\)

Với \(a=3k+1\) thì : \(P\left(x\right)=x^3-\left(3k+1\right)^2.x+2016b\)

\(=x^3-9k^2x-6k-x+2016b\)

\(=x\left(x-1\right)\left(x+1\right)-9k^2x-6kx+2016b⋮3\)

Với \(a=3k+2\) thi \(P\left(x\right)=x^3-\left(3k+2\right)^2.x+2016b\)

\(=x^3-9k^2x-12kx-4x+2016b\)

\(=x\left(x^2-4\right)-9k^2x-12kx+2016b\)

\(=\left(x-2\right)x\left(x+2\right)-9k^2x-12kx+2016b⋮3\)

Vậy ta có điều phải chứng minh.