Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(x^2-mx+m-5\left(1\right)\)
( a = 1; b = -m; c = m - 5 )
\(\Delta=b^2-4ac\)
\(=\left(-m\right)^2-4.1.\left(m-5\right)\)
\(=m^2-4m+20\)
\(=m^2-4m+2^2-2^2+20\)
\(=\left(m-2\right)^2+16>0\forall m\)
Vậy pt luôn có 2 nghiệm pb với mọi m
b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=-\frac{b}{a}=m\\P=x_1x_2=\frac{c}{a}=m-5\end{cases}}\)
Ta có: \(A=x_1^2+x_2^2\)
\(=S^2-2P\)
\(=m^2-2\left(m-5\right)\)
\(=m^2-2m+10\)
\(=m^2-2m+1^2-1^2+10\)
\(=\left(m-1\right)^2+9\ge9\)
Vậy \(MinA=9\Leftrightarrow\left(m-1\right)^2=0\Leftrightarrow m=0\)
để pt luôn có 2 no trái dấu => a.c <0
=> -m2 -2 < 0
=> -m2 < 2 [do m2 >0 hoặc m2 = 0]
=> m2 > -2 với mọi giá trị của m
KL : với m2 > -2 thì pt luôn có 2 no x1 , x2 trái dấu
a) tự làm nha
b xét tích ac ta có: \(-m^2+m-1=-\left(m^2-m+\frac{1}{4}+\frac{3}{4}\right)=-\left[\left(m-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
ta có: \(\left(m-\frac{1}{2}\right)^2\ge0\Leftrightarrow\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\Rightarrow-\left[\left(m-\frac{1}{2}\right)^2+\frac{3}{4}\right]<0\)với mọi m
=> tích ac <0 <=> pt luôn có 2 nghiệm pb trái dấu với mọi m
a) Tam thức bậc hai có \(\Delta'=m^2-m+4=m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+4=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\).
Suy ra phương trình (1) luôn có nghiệm với mọi m.
b) Theo Vi-et ta có:
\(x_1+x_2=2m,x_1.x_2=m-4\)
Điều kiển để \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)
\(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1x_2}\)
\(\Leftrightarrow x_1+x_2=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1x_2}\)
\(\Leftrightarrow2m=\frac{\left(2m\right)^3-3\left(m-4\right).2m}{m-4}\)
\(\Leftrightarrow2m\left(m-4\right)=8m^3-6m^2+8m\) và \(m\ne4\)
\(\Leftrightarrow4m\left(2m^2-2m+3\right)=0\) và \(m\ne4\)
\(\Leftrightarrow m=0\)
Viết lại đề : \(x^2-2mx+m^2-1=0\left(a=1;b=-2m;c=m^2-1\right)\)( 1 )
a, Thay m = 1 vào pt (1) ta đc
\(x^2-2.1x+1^2-1=0\Leftrightarrow x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)
Tương ứng vs : \(\left(2m\right)^2-4\left(m^2-1\right)=4m^2-4m^2+4=4>0\)(EZ>33)
c, Áp dụng hệ thức Vi et ta có : \(x_1+x_2=2m;x_1x_2=m^2-1\)
Theo bài ra ta có : \(x_1+x_2=12\)Thay vào ta đc
\(\Leftrightarrow2m=12\Leftrightarrow m=6\)
+\(\Delta=\left[-\left(m+1\right)\right]^2-4.1.\left(2m-3\right)\)
\(=m^2+2m+1-8m+12=m^2-6m+13=\left(m-3\right)^2+4>0\)
\(\Delta>0\Rightarrow\text{phương trình (1) có 2 nghiệm phân biệt}\)
+x=3
PT(1) trở thành : \(3^2-\left(m+1\right).3+2m-3=0\)
\(\Leftrightarrow-3m-3+2m+6=0\)
\(\Leftrightarrow-m+3=0\Leftrightarrow m=3\text{ Vậy với x=3 thì m=3}\)
cho tam giac ABC nội tiếp đường tròn tâm 0 gọi D là điểm chính giữa của cung nhỏ BC 2 tiếp tuyến C VÀ D với dg tròn tâm o cắt nhau tại E gọi P Q lần lượt là các giao điểm của các cặp dg thẳng AB và CD AD và
CMR BC//DE
tứ giác CODE APQC nội tiếp đường tròn
tìm điều kiện của tam giác ABC để góc AQP=90