\(\frac{15n^2+8n+6}{30n^2+21n+13}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2018

a) \(\frac{15n^2+8n+6}{30n^2+21+13}\)
Gọi d là ước chung lớn nhất của \(15n^2+8n+6\)\(30n^2+21+13\)
\(15n^2+8n+6⋮d\) ;\(30n^2+21+13⋮d\)
Ta có:
\(15n^2+8n+6⋮d\)
\(30n^2+16n+12⋮d\)
\(30n^2+21n+13⋮d\)
\(5n+1⋮d\) (1)
\(3n\left(5n+1\right)\text{ =}15n^2+3n⋮d\)
\(15n^2+8n+6-15n^2-3n=5n+6⋮d\)(2)
Từ (1) và (2), ta có:
\(5⋮d\)
\(5n+6=5\left(n+1\right)+1⋮d\)
Nên 1 ⋮ d
⇒ ĐPCM.

10 tháng 6 2017

Gọi d là ƯCLN của \(15n^2+8n+6\)\(30n^2+21n+13\)

Ta có \(15n^2+8n+6⋮d\)

\(\Rightarrow30n^2+16n+12⋮d\)

\(30n^2+21n+13⋮d\)

\(\Rightarrow5n+1⋮d\left(1\right)\)

\(\Rightarrow3n\left(5n+1\right)=15n^2+3n⋮d\)

\(\Rightarrow15n^2+8n+6-15n^2-3n\)

\(=5n+6⋮d\left(2\right)\)

Từ (1) và (2) \(\Rightarrow5⋮d\)

\(5n+6=5\left(n+1\right)+1⋮d\Rightarrow1⋮d\left(dpcm\right)\)

10 tháng 6 2017

Hình như bn nhầm đề:

Nếu 16->6 thì sẽ dễ làm hơn!

10 tháng 6 2017

Gọi d là : ƯCLN của : 12n + 1 và 30n + 2

Khi đó : 12n + 1 chia hết cho d , 30n + 2 chia hết cho d 

<=> 5(12n + 1) chia hết cho d  , 2(30n + 2) chia hết cho d 

<=> 60n + 5 chia hết cho d  , 60n + 4 chia hết cho d 

=> (60n + 5) - (60n + 4) chia hết cho d 

=> 1 chia hết cho d 

=> d = 1 

Vậy ƯCLN của 12n + 1 và 30n + 2 = 1

Do đó phân số \(\frac{12n+1}{30n+2}\) tối giản \(\forall n\in Z\)

10 tháng 6 2017

Gọi d là : ƯCLN của : 12n + 1 và 30n + 2

Khi đó : 12n + 1 chia hết cho d, 30n + 2 chia hết cho d

<=> 5(12n + 1) chia hết cho d, 2(30n + 2) chia hết cho d

<=> 60n + 5 chia hết cho d, 60n + 4 chia hết cho d

=> (60n + 5) - (60n + 4) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy ƯCLN của 12n +1 và 30n +2 = 1

Do đó phân số : \(\frac{12n+1}{30n+2}\) tối giản \(\forall n\in Z\)  .

Chúc bạn học tốt !

17 tháng 3 2020

a,Gọi d là ƯCLN của tử và mẫu.Ta có

15n+1 chia hết cho d        =>30n+2 chia hết cho d

30n+1 chia hết cho d        =>30n+1 chia hết cho d

=>(30n+2)-(30n+1) chia hết cho d=1 chia hết cho d=>d=1

Vậy WCLN của phân số đó là 1(đpcm)

DD
9 tháng 8 2021

a) Đặt \(d=\left(15n+1,30n+1\right)\).

Suy ra \(\hept{\begin{cases}15n+1⋮d\\30n+1⋮d\end{cases}}\Rightarrow2\left(15n+1\right)-\left(30n+1\right)=1⋮d\)

\(\Rightarrow d=1\).

Suy ra đpcm.

b) Đặt \(d=\left(n^3+3n,n^4+3n^2+1\right)\).

Suy ra \(\hept{\begin{cases}n^3+3n⋮d\\n^4+3n^2+1⋮d\end{cases}}\Rightarrow\left(n^4+3n^2+1\right)-n\left(n^3+3n\right)=1⋮d\)

\(\Rightarrow d=1\).

Suy ra đpcm.

kết bạn mình nha