\(\frac{21n+4}{14n+3}\)\(n\in N\), là...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

Gọi ƯCLN(21n+4,14n+3)=d

=>21n+4\(⋮\)d =>42n+8\(⋮\)d (1)

=>14n+3\(⋮\)d =>42n+9\(⋮\)d (2)

Từ (1) và (2) => (42n+9)-(42n+8)\(⋮\)d =>1\(⋮\)d =>d=1 (vì d=ƯCLN) 

=> \(\frac{21n+4}{14n+3}\)là phân số tối giản, với mọi n\(\in\)  N (ĐCCM)

Vậy \(\frac{21n+4}{14n+3}\)là phân số tối giản với mọi n\(\in\)N

3 tháng 7 2015

(18n+3)/(21n+7) = [(21n+7)-(3n+4)]/(21n+7) = 1 - (3n+4)/(21n+7) là phân số tối giản

<=> (3n+4)/(21n+7) tối giản 
<=> (21n+7)/(3n+4) tối giản

<=> [7.(3n+4) - 21]/(3n+4) = 7 - 21/(3n+4) tối giản 
<=> 21/(3n+4) = (3.7)/(3n+4) tối giản

<=> 7/(3n+4) tối giản (*) (vì 3n+4 không là bội của 3) (*)

<=> 3n+4 không chia hết cho 7 <=> 3n \(\ne\) 7k+3 trong đó k là bội của 3 (vì VT là bội của 3)

<=> 3n \(\ne\) 21m+3 (với k = 3m) <=> n \(\ne\) 7m+1 (m \(\in\) Z) 
Vậy n \(\ne\) 7m+1 (m \(\in\) Z) để phân số đã cho tối giản.

26 tháng 2 2019

(18n+3)/(21n+7) = [(21n+7)-(3n+4)]/(21n+7) = 1 - (3n+4)/(21n+7) là phân số tối giản

<=> (3n+4)/(21n+7) tối giản 
<=> (21n+7)/(3n+4) tối giản

<=> [7.(3n+4) - 21]/(3n+4) = 7 - 21/(3n+4) tối giản 
<=> 21/(3n+4) = (3.7)/(3n+4) tối giản

<=> 7/(3n+4) tối giản (*) (vì 3n+4 không là bội của 3) (*)

<=> 3n+4 không chia hết cho 7 <=> 3n \ne̸​= 7k+3 trong đó k là bội của 3 (vì VT là bội của 3)

<=> 3n \ne̸​= 21m+3 (với k = 3m) <=> n \ne̸​= 7m+1 (m \in∈ Z) 
Vậy n \ne̸​= 7m+1 (m \in∈ Z) để phân số đã cho tối giản.

19 tháng 10 2017

Em mới hc lớp 7 thui cho nên ko bít làm đúng ko

Vì n^3 chia hết cho n^4 và 2n chia hết cho 3n mà dưới mẫu có cộng thêm 1 

Cho nên ps trên tối giản

30 tháng 4 2018

không biết

3 tháng 9 2017

Mình mới lớp 7 thôi nên câu này mình không biết.Xin lỗi nha.

gọi d=( n+1, 2n+1)

=> n+1 chia hết cho d=> 2n+2 chia hết cho d

=>2n+1 chia hết cho d=> 2n+1 chia hết cho d

=> ( 2n+2)-( 2n+1) chia hết cho d

=> 1 chia hết cho d

=> d= -1 hoặc +1

=> phân số n+1/2n+1 là phân số tối giản

b, giải 

  Gọi d là \(UCLN\left(n+1,n+2\right)\)

\(\Rightarrow\orbr{\begin{cases}n+1⋮d\\n+2⋮d\end{cases}}\)

\(\Rightarrow\left(n+1\right)-\left(n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow UCLN\left(n+1,n+2\right)=1\)

\(\Rightarrow\frac{n+1}{n+2}\) là phân số tối giản (ĐPCM)

21 tháng 6 2016

http://olm.vn/hoi-dap/question/609253.html

21 tháng 6 2016

chưa có ai trả lời hết mà