K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

Gọi UCLN(4m+8,2m+3) = d

\(\Rightarrow\) 4m+8 \(⋮\) d

2m+3 \(⋮\) d \(\Rightarrow\) 2(2m+3) \(⋮\) d \(\Rightarrow\) 4m+6 \(⋮\) d

\(\Rightarrow\)( 4m+8 ) - (4m+6 ) \(⋮\) d

hay 2 \(⋮\) d

\(\Rightarrow\) d \(\in\) U(2)

Mà U(2)=\(\left\{-2;-1;1;2\right\}\)

\(\Rightarrow\) d \(\in\left\{-2;-1;1;2\right\}\)

Mà 2m+3 là dạng số lẻ \(\Rightarrow\) 2m+3 \(⋮̸\) 2 \(\Rightarrow\) d\(\ne\) -2 và 2

\(\Rightarrow\) d = 1 ; -1

Vậy \(\dfrac{4m+8}{2m+3}\) là p/s tối giản với mọi m ( ĐPCM )

11 tháng 3 2017

ta có:

gọi d là 1 ước chung của 4m+8 và 2m+3

vì 2m+3 chia hết cho d

=> 2.(2m+3) cũng chia hết cho d

=> 4m+6 chia hết cho d

=>4m+8-(4m+6) chia hết cho d

=>2 chia hết cho d

=> d\(\in\){-2;-1;1;2}

mà 2m+3 ko chia hết cho -2 hoặc 2

=> d chỉ có thể bằng 1hoặc -1

=>\(\dfrac{4m+8}{2m+3}\) là phân số tối giản

Đặt d = ( 4m + 8 , 2m + 3 )

\(\Rightarrow4m+8⋮d\)

\(2m+3⋮d\)\(\Rightarrow2\left(2m+3\right)⋮d\)\(\Rightarrow4m+6⋮d\)

\(\Rightarrow\left(4m+8-4m-6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\inƯC\left(2\right)\)

\(\Rightarrow d\in\left(1;2\right)\)

Do 2m + 3 là số lẻ nên d là số lẻ

\(\Rightarrow d=1\)

Vậy \(\left(4m+8;2m+3\right)=1\)

Hay \(\frac{4m+8}{2m+3}\)là phân số tối giản

12 tháng 3 2017

Đặt d = ( 4m + 8 , 2m + 3 )

\(\Rightarrow4m+8⋮d\)

\(2m+3⋮d\)\(\Rightarrow2\left(2m+3\right)⋮d\)\(\Rightarrow4m+6⋮d\)

\(\Rightarrow\left(4m+8-4m-6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\inƯC\left(2\right)\)

\(\Rightarrow d\in\left(1;2\right)\)

Do 2m + 3 là số lẻ nên d là số lẻ

\(\Rightarrow d=1\)

Vậy \(\left(4m+8;2m+3\right)=1\)

Hay \(\frac{4m+8}{2m+3}\)là phân số tối giản

20 tháng 2 2017

CM 1 câu còn câu kia làm tương tự nhé!

ĐẶt UC(2m+3,m+1)=d

=> \(\hept{\begin{cases}2m+3⋮d\\m+1⋮d\end{cases}\Leftrightarrow}\)\(2m+3-2\left(m+1\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy phân số tối giản

P/S: PP chung cho dạng này là đặt UC của tử và mẫu là d rồi bù trừ thích hợp để CM d=1

Nếu giả sử khi bù trừ ta ra được 1 số khác 1, ví dụ như câu b, sau khi tử - 2 lần mẫu sẽ ra \(2⋮d\)=> d=1 hoặc d=2 nhưng mẫu là 2m+3 là số lẻ không chia hết cho 2 nên d=1

AH
Akai Haruma
Giáo viên
5 tháng 2

a/

Gọi $d=ƯCLN(n+1, 2n+3)$

$\Rightarrow n+1\vdots d; 2n+3\vdots d$

$\Rightarrow 2n+3-2(n+1)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$

AH
Akai Haruma
Giáo viên
5 tháng 2

b/

Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé. 

Bạn xem lại đề.

28 tháng 1 2022

Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*) 

\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)

Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)

\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)

Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

28 tháng 1 2022

a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n+3 là số lẻ nên

\(\Rightarrow d=1\left(đpcm\right)\)

c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

21 tháng 2 2017

Đặt UC(n+2,2n+3)=d

Ta có: 

\(\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}2\left(n+2\right)-\left(2n+3\right)⋮d\Rightarrow1⋮d\Rightarrow1=d\)

Vậy phân số tối giản

21 tháng 2 2017

gọi ucln của n+2va 2n+3 là d

ta có:

n+2=2n+4;2n+3 du nguyen

2n+4-2n+3

=>1chia het cho d

vi d la ucln cua 1=>d=1

=>do la phan so toi gian

24 tháng 2 2022

\(\text{Để }\) \(\dfrac{7n + 4 }{ 5n + 3 } \) \(\text{ tối giản }\)

\(\Rightarrow ƯC( 7n + 4 ; 5n + 3 ) = 1 \)

\(\text{ Gọi }\) \(ƯC( 7n + 4 ; 5n + 3 ) = d\)

\(\text{ Theo đề bài ta có :}\)

\(\begin{cases} 7n + 4 \vdots d \\5n + 3 \vdots d \end{cases}\)

\(\Rightarrow \begin{cases} 5( 7n + 4 ) \vdots d\\ 7( 5n + 3) \vdots d\end{cases}\)

\(\Rightarrow 7( 5n + 3 ) - 5( 7n + 4 ) \vdots d\)

\(\Rightarrow 35n + 21 - 35n - 20 \vdots d\)

\(\Rightarrow 1 \vdots d\)

\(\Rightarrow d = 1\)

\(\text{ Từ đó suy ra }\) \(: \dfrac{7n + 4 }{ 5n + 3 }\) \(\text{ là phân số tối giản } \)

\(\text{ Vậy }\) \(: \dfrac{7n + 4 }{ 5n + 3 }\) \(\text{ là phân số tối giản } \)

\(#kisibongdem\)