\(\ge\)|y| thì:

|x+y|+|x-y|=\(\l...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

ta có: \(\left(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right)^2=1^2\)

\(\Leftrightarrow2x^2y^2+x^2+y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=0\)

\(\Leftrightarrow\left(x\sqrt{1+y^2}+y\sqrt{1+x^2}\right)^2=0\)

\(\Leftrightarrow x\sqrt{1+y^2}+y\sqrt{1+x^2}=0\left(đpcm\right)\)

16 tháng 7 2018

a, \(\left(\sqrt{3}-\sqrt{2}\right)\cdot\sqrt{5+2\sqrt{6}}=\sqrt{15+2\cdot3\cdot\sqrt{6}}-\sqrt{10+2\cdot2\cdot\sqrt{6}}=\sqrt{9+2\cdot3\cdot\sqrt{6}+6}-\sqrt{6+2\cdot\sqrt{6}\cdot2+4}=\sqrt{\left(3+\sqrt{6}\right)^2}-\sqrt{\left(\sqrt{6}+2\right)^2}=3+\sqrt{6}-\sqrt{6}-2=3-2=1\left(đpcm\right)\)

b, đề không rõ ràng

áp dụng cauchy ngược dấu là xong nhé bạn :>> mình ko đánh đc sorry bạn