Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng bất đẳng thức Cauchy cho các số dương, ta có :
\(\log_23+\log_32>2\sqrt{\log_23.\log_32}=2\sqrt{1}=2\)
Không xảy ra dấu "=" vì \(\log_23\ne\log_32\)
Mặt khác, ta lại có :
\(\log_23+\log_32<\frac{5}{2}\Leftrightarrow\log_23+\frac{1}{\log_23}-\frac{5}{2}<0\)
\(\Leftrightarrow2\log^2_23-5\log_23+2<0\)
\(\Leftrightarrow\left(\log_23-1\right)\left(\log_23-2\right)<0\) (*)
Hơn nữa, \(2\log_23>2\log_22>1\) nên \(2\log_23-1>0\)
Mà \(\log_23<\log_24=2\Rightarrow\log_23-2<0\)
Từ đó suy ra (*) luôn đúng. Vậy \(2<\log_23+\log_32<\frac{5}{2}\)
b) Vì \(a,b\ge1\) nên \(\ln a,\ln b,\ln\frac{a+b}{2}\) không âm.
Áp dụng bất đẳng thức Cauchy ta có
\(\ln a+\ln b\ge2\sqrt{\ln a.\ln b}\)
Suy ra
\(2\left(\ln a+\ln b\right)\ge\ln a+\ln b+2\sqrt{\ln a\ln b}=\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)
Mặt khác :
\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow\ln\frac{a+b}{2}\ge\frac{1}{2}\left(\ln a+\ln b\right)\)
Từ đó ta thu được :
\(\ln\frac{a+b}{2}\ge\frac{1}{4}\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)
hay \(\frac{\sqrt{\ln a}+\sqrt{\ln b}}{2}\le\sqrt{\ln\frac{a+b}{2}}\)
c) Ta chứng minh bài toán tổng quát :
\(\log_n\left(n+1\right)>\log_{n+1}\left(n+2\right)\) với mọi n >1
Thật vậy,
\(\left(n+1\right)^2=n\left(n+2\right)+1>n\left(n+2\right)>1\)
suy ra :
\(\log_{\left(n+1\right)^2}n\left(n+2\right)<1\Leftrightarrow\frac{1}{2}\log_{n+1}n\left(n+2\right)<1\)
\(\Leftrightarrow\log_{n+1}n+\log_{\left(n+1\right)}n\left(n+2\right)<2\)
Áp dụng bất đẳng thức Cauchy ta có :
\(2>\log_{\left(n+1\right)}n+\log_{\left(n+1\right)}n\left(n+2\right)>2\sqrt{\log_{\left(n+1\right)}n.\log_{\left(n+1\right)}n\left(n+2\right)}\)
Do đó ta có :
\(1>\log_{\left(n+1\right)}n.\log_{\left(n+1\right)}n\left(n+2\right)\) và \(\log_n\left(n+1>\right)\log_{\left(n+1\right)}\left(n+2\right)\) với mọi n>1
Ta có : \(y'=\cos x.e^{\sin x}\Rightarrow y"=-\sin x.e^{\sin x}+\cos^2x.e^{\sin x}\)
\(\Rightarrow y"=-\sin x.y+\cos x.y'\Rightarrow y'\cos x-y.\sin x-y"=0\)
=> Điều phải chứng minh
Gọi \(x_1,x_2\) là các nghiệm phương trình và \(r=\left|x_2\right|=\left|x_2\right|\) Khi đó :
\(\frac{p^2}{q^2}=\frac{\left(x_1+x_2\right)^2}{x_1x_2}=\frac{x_1}{x_2}+\frac{x_2}{x_1}+2=\frac{x_1\overline{x_2}}{r^2}+\frac{x_2\overline{x_1}}{r^2}+2=2+\frac{2}{r^2}Re\left(x_1\overline{x_2}\right)\)
Là số thực, hơn nữa :
\(Re\left(x_1\overline{x_2}\right)\ge-\left|x_1\overline{x_2}\right|=-r^2\)
Do đó \(\frac{p^2}{q^2}\ge0\)
vậy \(\frac{p}{q}\) là một số thực
Do \(a+b=1\Rightarrow b=1-a\)
Suy ra : \(f\left(b\right)=f\left(1-a\right)=\frac{9^{1-a}}{9^{1-a}+3}=\frac{9}{9+3.9^a}=\frac{3}{3+9^a}\)
\(\Rightarrow f\left(a\right)+f\left(b\right)=\frac{9^a}{9^a+3}+\frac{3}{3+9^a}=1\)
Theo giả thiết ta có : \(x^2+4y^2=12xy\Leftrightarrow\left(x+2y\right)^2=16xy\)
Do \(x,y>0\Rightarrow x+2y=4\sqrt{xy}\)
Khi đó ta có :
\(lg\left(x+2y\right)=lg4+\frac{1}{2}lgxy\Leftrightarrow lg\left(x+2y\right)-2lg2=\frac{1}{2}\left(lgx+lgy\right)\)
Vậy với \(x,y>0\) và \(x^2+4y^2=12xy\) thì \(lg\left(x+2y\right)-2lg2=\frac{1}{2}\left(lgx+lgy\right)\)
TL :
Gọi số cạnh của khối đa diện là \(C\), số đỉnh là \(Đ\). Vì mỗi đỉnh là đỉnh chung của ba cạnh và mỗi cạnh có \(2\)đỉnh nên \(3Đ=2C\)do đó \(Đ\) là sỗ chẵn.
HT
a) Ta có
\(a^2+4b^2=12ab\Leftrightarrow\left(a+2b\right)^2=16ab\)
Do a,b dương nên \(a+2b=4\sqrt{ab}\) khi đó lấy logarit cơ số 10 hai vế ta được :
\(lg\left(a+2b\right)=lg4+\frac{1}{2}lg\left(ab\right)\)
hay
\(lg\left(a+2b\right)-2lg2=\frac{1}{2}\left(lga+lgb\right)\)
b) Giả sử a,b,c đều dương khác 0. Để biểu diễn c theo a, ta rút lgb từ biểu thức \(a=10^{\frac{1}{1-lgb}}\) và thế vào biểu thức \(b=10^{\frac{1}{1-lgc}}\). Sau khi lấy logarit cơ số 10 2 vế, ta có :
\(a=10^{\frac{1}{1-lgb}}\Rightarrow lga=\frac{1}{1-lgb}\Rightarrow lgb=1-\frac{1}{lga}\)
Mặt khác , từ \(b=10^{\frac{1}{1-lgc}}\) suy ra \(lgb=\frac{1}{1-lgc}\) Do đó :
\(1-\frac{1}{lga}=\frac{1}{1-lgc}\)
\(\Rightarrow1-lgx=\frac{lga}{lga-1}=1+\frac{1}{lga-1}\)
\(\Rightarrow lgc=\frac{1}{1-lga}\)
Từ đó suy ra : \(c=10^{\frac{\frac{1}{1-lga}}{ }}\)
a) Xét phương trình : \(f'\left(x\right)=2x^2+2\left(\cos a-3\sin a\right)x-8\left(1+\cos2a\right)=0\)
Ta có : \(\Delta'=\left(\cos a-3\sin a\right)^2+16\left(1+\cos2a\right)=\left(\cos a-3\sin a\right)^2+32\cos^2\), \(a\ge0\) với mọi a
Nếu \(\Delta'=0\Leftrightarrow\cos a-3\sin a=\cos a=0\Leftrightarrow\sin a=\cos a\Rightarrow\sin^2a+\cos^2a=0\) (Vô lí)
Vậy \(\Delta'>0\)
với mọi a \(\Rightarrow f'\left(x\right)=0\)
có 2 nghiệm phân biệt \(x_1,x_2\) và hàm số có cực đại, cực tiểu
b) Theo Viet ta có \(x_1+x_2=3\sin a-\cos a\)
\(x_1x_2=-4\left(1+\cos2a\right)\)
\(x^2_1+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(3\sin a-\cos a\right)^2+8\left(1+\cos2a\right)=9+8\cos^2a-6\sin a\cos a\)
\(=9+9\left(\sin^2a+\cos^2a\right)-\left(3\sin a+\cos a\right)^2=18-\left(3\sin a+\cos2a\right)\le18\)