Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n chia cho 7 dư 4 => n = 7k + 4 ( k là số tự nhiên)
n2 = (7k + 4)2 = 49k2 + 56k + 16 = 7(7k2 + 8k + 2) + 2 => n2 chia cho 7 dư 2
Ví dụ: p=5 thì (p+1)(p-1)=4x6=24
Vì (5+1)(5-1) (tức 24) chia hết cho 24 suy ra các số nguyên tố lớn hơn 3 thì đều chia hết cho 24(dpcm)
k đúng cho mk nha!
Đặt A = p + p +2 = 2p +2 = 2(p +1)
p +2 = p -1 +3
Xét 3 số liên tiếp : p -1 , p , p +1 có 1 và chỉ 1 số chia hết cho 3
Vì p nguyên tố lớn hơn 3 nên p không chia hết cho 3. Mặt khác p -1 không chia hết cho 3, vì nếu chia hết cho 3 thì p +2 chia hết cho 3, trái với gt là p +2 là số nguyên tố >3. Vậy chỉ còn p+1 chia hết cho 3 => 2(p +1) chia hết cho 3 tức A chia hết cho 3 (*)
Ta lại có p nguyên tố >3 nên p là số lẻ => p = 2k +1 => A = 4k + 4 chia hết cho 4 (**)
mà (3,4) =1 (***)
Từ (*) , (**), (***) => A chia hết cho 12
Đề sai. Bạn cho $a=3,b=5$ thì $a^3b-ab^2=60$ không chia hết cho $240$
Do m ; m + k ; m + 2k là các số nguyên tố > 3 nên m ; m + k; m+ 2k lẻ => m + m + k = 2m + k chẵn => k chẵn => k chia hết cho 2
m là số nguyên tố > 3 => m = 3p + 1 hoặc m = 3p + 2
+ Nêu m = 3p + 1:
xét k = 3a + 2 => m + k = 3p + 1 + 3a + 2 = 3p + 3a + 3 là hợp số => loại
xét k = 3a + 1 => m + 2k = 3p + 1 + 2.(3a+1) = 3p + 6a + 3 là hợp số => loại
=> k = 3a hay k chia hết cho 3
+ Nếu m = 3p + 2
xét k = 3a + 2 => m + 2k = 3p + 2 + 6a + 4 = 3p + 6a + 6 là hợp số => loại
xét k = 3a + 1 => m + k = 3p + 2 + 3a + 1 = 3p + 3a + 3 là hợp số => loại
=> k = 3a
Vậy k = 3a hay k chia hết cho 3 mà k chia hết cho 2 nên k chia hết cho 6 (đpcm)
Do m ; m + k ; m + 2k là các số nguyên tố > 3 nên m ; m + k; m+ 2k lẻ => m + m + k = 2m + k chẵn => k chẵn
=> k chia hết cho 2
m là số nguyên tố > 3 => m = 3p + 1 hoặc m = 3p + 2
+ Nêu m = 3p + 1:
xét k = 3a + 2 => m + k = 3p + 1 + 3a + 2 = 3p + 3a + 3 là hợp số => loại
xét k = 3a + 1 => m + 2k = 3p + 1 + 2.(3a+1) = 3p + 6a + 3 là hợp số => loại
=> k = 3a hay k chia hết cho 3
+ Nếu m = 3p + 2
xét k = 3a + 2 => m + 2k = 3p + 2 + 6a + 4 = 3p + 6a + 6 là hợp số => loại
xét k = 3a + 1 => m + k = 3p + 2 + 3a + 1 = 3p + 3a + 3 là hợp số => loại
=> k = 3a
Vậy k = 3a hay k chia hết cho 3 mà k chia hết cho 2 nên k chia hết cho 6 (đpcm)
Theo đề bài, ta có: \(p^2+a^2=b^2\Rightarrow p^2=b^2-a^2=\left(b+a\right)\left(b-a\right)\)(1)
Vì p là số nguyên tố nên \(p^2\)có 3 ước là \(1;p;p^2\)(2)
Từ (1) và (2) suy ra có 3 khả năng có thể xảy ra là:
Khả năng 1: \(\hept{\begin{cases}b+a=1\\b-a=p^2\end{cases}}\). Điều này không thể xảy ra vì p > 3 nên \(p^2>9\Rightarrow b-a>9>1=b+a\Rightarrow-2a>0\)vô lí vì a nguyên dương
Khả năng 2: \(\hept{\begin{cases}b+a=p\\b-a=p\end{cases}}\Rightarrow b+a=b-a\Rightarrow2a=0\Rightarrow a=0\)(Loại vì a nguyên dương, không thể bằng 0)
Khả năng 3: \(\hept{\begin{cases}b+a=p^2\left(3\right)\\b-a=1\left(4\right)\end{cases}}\)
Lấy (3) - (4), ta được: \(2a=p^2-1=\left(p+1\right)\left(p-1\right)\)
Vì p là số nguyên tố lớn hơn 3 (*) nên p không chia hết cho 3 nên \(p^2\)chia 3 dư 1\(\Rightarrow p^2-1⋮3\)
\(\Rightarrow2a⋮3\)mà \(\left(2,3\right)=1\)nên \(a⋮3\)(**)
Từ (*) suy ra p lẻ nên \(p-1\)và \(p+1\)là hai số chẵn liên tiếp
Đặt \(p-1=2k\left(k\inℕ,k>1\right)\)thì \(p+1=2k+2\Rightarrow\left(p-1\right)\left(p+1\right)=4k\left(k+1\right)\)
Vì \(k\left(k+1\right)\)là tích của hai số nguyên liên tiếp nên \(k\left(k+1\right)⋮2\)suy ra \(4k\left(k+1\right)⋮8\)
hay \(2a⋮8\Rightarrow a⋮4\)(***)
Từ (**) và (***) suy ra \(a⋮12\)do \(\left(3,4\right)=1\)(đpcm)
Vì \(2a=p^2-1\Rightarrow2\left(p+a+1\right)\) \(=2p+2a+2=2p+p^2-1+2=p^2+2p+1=\left(p+1\right)^2\)là số chính phương (đpcm)