Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) chia hết cho 2:
Nếu n = 2k+1 thì n+1 \(⋮\)2
Nếu n = 2k thì n+4 \(⋮\)2
+) chia hết cho 3:
nếu n = 3k thì n + 3 \(⋮\)3
nếu n = 3k +1 thì n +5 = 3k +6 \(⋮\)3
nếu n = 3k +2 thì n+1 = \(3k+3⋮3\)
Vậy tích trên luôn chia hết cho 2 và 3
a)
Gọi d=(2n+1;3n+2)
Ta có
2n+1\(⋮\)d => 3(2n+1)=6n+3\(⋮\)d
3n+2\(⋮\)d => 2(3n+2)=6n+4\(⋮\)d
=> 6n+4-(6n+3)=1\(⋮\)d
hay d=1
Vậy 2n+1 và 3n+2 là số nguyên tố cùng nhau
a) Gọi \(\left(2n+1;3n+2\right)=d\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯ\left(1\right)=\left\{\pm1\right\}\)
Vậy 2n+1 và 3n+2 nguyên tố cùng nhau
Bài giải
a, Ta có : \(\frac{2x+5}{x+2}=\frac{2\left(x+2\right)+1}{x+2}=\frac{2\left(x+2\right)}{x+2}+\frac{1}{x+2}=2+\frac{1}{x+2}\)
\(2x+5\text{ }⋮\text{ }x+2\text{ khi }1\text{ }⋮\text{ }x+2\text{ }\Rightarrow\text{ }x+2\inƯ\left(1\right)\)
\(\Rightarrow\orbr{\begin{cases}x+2=-1\\x+2=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=-1\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{-3\text{ ; }-1\right\}\)
a) \(2\left(x+2\right)+1⋮x+2\)
\(\Leftrightarrow1⋮x+2\)
b) \(3x+5⋮x-2\)
\(\Leftrightarrow3\left(x-2\right)+11⋮x-2\)
\(\Leftrightarrow11⋮x-2\)
c) \(x^2+3⋮x+4\)
\(\Leftrightarrow\left(x^2-16\right)+19⋮x+4\)
\(\Leftrightarrow\left(x-4\right)\left(x+4\right)+19⋮x+4\)
\(\Leftrightarrow19⋮x+4\)
P/s : Mình chỉ làm đến bước này thôi, các bước tiếp theo bạn tự làm nhé. Chúc bạn học tốt !
Ta có : \(n+4=n-1+\)\(5\)
Ta thấy : \(\left(n-1\right)⋮\left(n-1\right)\)
Nên \(\left(n+4\right)⋮\left(n-1\right)\Leftrightarrow5⋮\)\(\left(n-1\right)\)
\(\Leftrightarrow\left(n-1\right)\inƯ\left(5\right)=\)\((1;5)\)
N - 1 | 1 | 5 |
N | 2 | 6 |
a) \(n+4⋮n-1\Rightarrow\left(n-1\right)+5⋮n-1\Rightarrow5⋮n-1\Rightarrow n-1\inƯ\left(5\right)\)
\(\Rightarrow n-1\in\left\{1;5;-1;-5\right\}\Rightarrow n\in\left\{2;6;0;-4\right\}\)
b) \(n^2+2n-3=\left(n^2+n\right)+n-3=n\left(n+1\right)+n-3\)
vì \(n\left(n-1\right)⋮n-1\)\(\Rightarrow n-3⋮n+1\Rightarrow\left(n+1\right)-4⋮n-1\Rightarrow4⋮n-1\Rightarrow n-1\inƯ\left(4\right)\)
\(\Rightarrow n-1\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow n\in\left\{2;3;5;0;-1;-3\right\}\)
(n.n+6) chia hết cho(n+1)
n(n+1)+5 chia hết cho (n+1)
suy ra 5 chia hết cho ( n+1)
suy ra ( n+1) thuộc Ư(5)
.........rồi còn lại cứ thế tim ước của 5 rùi tính nha!!!