Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\\\dfrac{1}{z}=c\end{matrix}\right.\) \(\dfrac{\Rightarrow1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=a+b+c=0\)
cơ bản \(\left(a+b+c\right)=0\Rightarrow a^3+b^3+c^3=3abc\)
\(\Rightarrow x.y.z\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=\dfrac{1}{abc}.\left(a^3+b^3+c^3\right)=\dfrac{1}{abc}\left(3abc\right)=3=>dpcm\Leftrightarrow dccm\)
Đầu tiên ta cm:\(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+\left(-a-b\right)^3=3abc\)
\(\Leftrightarrow a^3+b^3-a^3-3a^2b-3ab^2-b^3=3abc\)
\(\Leftrightarrow-3a^2b-3ab^2=3abc\)
\(\Leftrightarrow-3ab\left(a+b\right)=3abc\)
\(\Leftrightarrow-3ab\cdot\left(-c\right)=3abc\)(đúng)
Áp dụng:\(\Rightarrow xyz\cdot\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)=xyz\cdot\dfrac{3}{xyz}=3\left(đpcm\right)\)
Ta có: \(\left(x+y\right)+z^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)=x^2+y^2+z^2\)
\(\Rightarrow xy+yz+xz=0\Rightarrow\dfrac{xy+yz+xz}{xyz}=0\)
Hay \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\Rightarrow\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=\dfrac{-1}{z}\Rightarrow\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^3=\left(-\dfrac{1}{z}\right)^3\)
\(\Leftrightarrow\dfrac{1}{x^3}+\dfrac{3}{xy}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\dfrac{1}{y^3}=\dfrac{-1}{z^3}\)hay \(\dfrac{1}{x^3}-\dfrac{3}{xyz}+\dfrac{1}{y^3}=\dfrac{-1}{z^3}\)
\(\Rightarrow\dfrac{1}{x^2}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{3}{xyz}\)
1) a) \(\dfrac{x^2-y^2}{x^3}+y^{^3}.\left(\dfrac{xy-x^2-y^2}{y}.\dfrac{xy}{y-x}\right)\)
\(=\dfrac{x^2-y^2}{x^3}+y^3.\dfrac{x\left(xy-x^2-y^2\right)}{y-x}\)
\(=\dfrac{x^2-y^2}{x^3}+\dfrac{xy^3\left(xy-x^2-y^2\right)}{y-x}\)
\(=\dfrac{-\left(x-y\right)^2\left(x+y\right)+xy^3\left(xy-x^2-y^2\right)}{x^3\left(y-x\right)}\)
Cậu tự thu gọn nốt nhé , tớ sắp đi hok
Bài 2 . Theo giả thiết : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
=> \(\dfrac{yz+xz+xy}{xyz}=\dfrac{1}{x+y+z}\)
=> \(\left(x+y+z\right)\left(yz+zx+xy\right)=xyz\)
=>\(x\left(yz+xz+xy\right)+y\left(yz+xz+xy\right)+z\left(yz+xz+xy\right)-xyz=0\)=> \(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
Ta có :
* x = - y
* y = -z
* x = -z
Áp dụng đều này vào phân thức cần CM , ta có :
TH1 . x = -y
\(\dfrac{1}{\left(-y\right)^5}+\dfrac{1}{y^5}+\dfrac{1}{z^5}=\dfrac{1}{\left(-y\right)^5+y^5+z^5}\)
=> \(\dfrac{1}{z^5}=\dfrac{1}{z^5}\), luôn đúng
Tương tự thử với các trường hợp còn lại ta cũng sẽ có được đpcm
ĐK: \(x,y,z,x+y+z\ne0\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\Rightarrow\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+\left(\dfrac{1}{z}-\dfrac{1}{x+y+z}\right)=0\)
\(\Rightarrow\dfrac{x+y}{xy}+\dfrac{x+y}{z\left(x+y+z\right)}=0\)
\(\Rightarrow\left(x+y\right)\left(\dfrac{1}{xy}+\dfrac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Rightarrow\left(x+y\right)\left(\dfrac{xy+yz+zx+z^2}{xyz\left(x+y+z\right)}\right)=0\)
\(\Rightarrow\left(x+y\right)\left(\dfrac{\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}\right)=0\)
\(\Rightarrow\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)
\(\Rightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
\(\circledast x=-y\)
\(\Rightarrow\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{1}{-y^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{1}{z^3}\)
\(\dfrac{1}{x^3+y^3+z^3}=\dfrac{1}{-y^3+y^3+z^3}=\dfrac{1}{z^3}\)
Vậy \(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}=\dfrac{1}{x^3+y^3+z^3}\)
Lầm tương tự với hai trường hợp còn lại ta có đpcm