Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,c=dk\)
\(\cdot\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)
\(\cdot\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\)\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Chúc bạn học tốt!!! k cho mk nha !!
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
\(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)
<=>\(\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)
<=> \(\frac{a+b+c+d}{c+d}=\frac{a+b+c+d}{d+a}\)
<=> \(\frac{a+b+c+d}{c+d}-\frac{a+b+c+d}{d+a}=0\)
<=> \(\left(a+b+c+d\right)\left(\frac{1}{c+d}-\frac{1}{d+a}\right)=0\)
<=> \(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}-\frac{1}{d+a}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a+b+c+d=0\\c=a\end{cases}\left(đpcm\right)}}\)
Đặt a/b=c/d= t suy ra a=bt; c=dt
(a+b)/(a-b)= bt+b/bt-b = b(t+1)/b(t-1)=t+1/t-1 (1)
(c+d)/(c-d)= dt+d/dt-d = d(t+1)/d(t-1)=t+1/t-1 (2)
Từ (1) và (2) suy ra (a+b)/(a-b)= (c+d)/(c-d)
#)Sửa đề :
CMR : Nếu a/b < c/d (b,d thuộc N*) thì a/b < a+c/ b+d < c/d
#)Giải :
\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bc}< \frac{cb}{bd}\)
Vì b, d thuộc N* => ad < bc
=> ad + ab < bc + ab => a( b + d ) < b( a + c ) => \(\frac{a}{b}< \frac{a+c}{b+d}\)
Tương tự, ta có :
\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\left(đpcm\right)\)
\(2bd=c\left(b+d\right)\Rightarrow2b=\frac{c\left(b+d\right)}{d}\)
\(\Rightarrow a+c=\frac{c\left(b+d\right)}{d}\Rightarrow\frac{a+c}{c}=\frac{b+d}{d}\Rightarrow\frac{a}{c}+1=\frac{b}{d}+1\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Ta có:
\(a+c=2b_{\left(1\right)}\)
\(2bd=c\left(b+d\right)_2\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\left(a+c\right).d=c.\left(b+d\right)\)
\(\Rightarrow\)\(ad+cd=cb+cd\)( tính chất phân phối )
\(\Rightarrow\)\(ad=bc\)( rút gọn cả 2 vế cho \(cd\))
\(\Rightarrow\)\(\frac{a}{b}=\frac{c}{d}\)( tính chất cơ bản của tỉ lệ thức )
\(\Rightarrow\)\(\left(đpcm\right)\)
Ta có : \(\frac{a}{b}<\frac{c}{d}\Rightarrow\frac{ad}{bd}<\frac{cb}{bd}\)
\(\Rightarrow\)\(ad\)\(<\)\(cb\) (vì \(bd>0\)) \(\left(1\right)\)
\(\frac{a}{b}=\frac{a\left(b+d\right)}{b\left(b+d\right)}=\frac{ab+ad}{b\left(b+d\right)}\)
\(\frac{a+c}{b+d}=\frac{\left(a+c\right)b}{\left(b+d\right)b}=\frac{ab+cb}{b\left(b+d\right)}\)
vì \(b,d>0\Rightarrow b\left(b+d\right)>0\) \(\left(1\right)\)
vì \(ad\)\(<\)\(cd\Rightarrow\)\(ab+ad\)\(<\)\(ab+cb\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow\) \(\frac{ab+ad}{b\left(b+d\right)}<\frac{ab+cb}{b\left(b+d\right)}\)
hay \(\frac{a}{b}<\frac{a+c}{b+d}\) \(\left(\cdot\right)\)
\(\frac{a+c}{b+d}=\frac{d\left(a+c\right)}{d\left(b+d\right)}=\frac{ad+cd}{d\left(b+d\right)}\)
\(\frac{c}{d}=\frac{c\left(b+d\right)}{d\left(b+d\right)}=\frac{cb+cd}{d\left(b+d\right)}\)
Vì \(ad\)\(<\)\(cd\Rightarrow\)\(ad+cd<\)\(cb+cd\) \(\left(3\right)\)
Từ \(\left(1\right)\) và \(\left(3\right)\) \(\Rightarrow\frac{ad+cd}{d\left(b+d\right)}<\frac{cb+cd}{d\left(b+d\right)}\)
hay \(\frac{a+c}{b+d}<\frac{c}{d}\) \(\left(\cdot\cdot\right)\)
Từ \(\left(\cdot\right)\) và \(\left(\cdot\cdot\right)\Rightarrow\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{a}{b}-1=\dfrac{c}{d}-1\)
\(\Leftrightarrow\dfrac{a-b}{b}=\dfrac{c-d}{d}\)