![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) a2 + b2 + c2 = ab + ac + bc
=> 2a2 + 2b2 + 2c2 = 2ab + 2ac + 2bc
=> 2a2 + 2b2 + 2c2 - 2ab - 2ac - 2bc = 0
=> (a2 - 2ab + b2) + (a2 - 2ac + c2) + (b2 - 2bc + c2) = 0
=> (a - b)2 + (a - c)2 + (b - c)2 = 0
Do 3 hạng tử trên đều có giá trị lớn hơn hoặc bằng 0 nên a - b = a - c = b - c = 0
=> a = b = c
b) a3 + b3 + c3 = 3abc
=> a3 + b3 + c3 - 3abc = 0
=> a3 + 3a2b + 3ab2 + b3 + c3 - 3abc - 3a2b - 3ab2 = 0
=> (a + b)3 + c3 - 3ab(a + b + c) = 0
=> (a + b + c)(a2 + 2ab + b2 - bc - ac + c2) - 3ab(a + b + c) = 0
=> (a + b + c)(a2 + b2 + c2 - ab - bc - ac) = 0
=> a + b + c = 0
hoặc a2 + b2 + c2 = ab + bc + ac => a = b = c
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\)
\(\Leftrightarrow a=b=c\)
Ta có:
a2 + b2 + c2 = ab + bc + ac
=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ac
=> 2a2 + 2b2 + 2c2 -2ab - 2bc - 2ac = 0
=> a2 + a2 + b2 + b2 + c2 + c2 -2ab - 2bc - 2ac = 0
=> ( a2 -2ab+b2 ) +( b2 - 2bc +c2 ) + ( a2 - 2ac + c2)=0
=> ( a-b)2 + ( b-c)2 + (a-c)2 =0
=> a-b =0 hoặc b-c = 0 hoặc a-c = 0
=> a = b = c ( đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Do \(c^2+2\left(ab-ac-bc\right)=0\Leftrightarrow-c^2=2\left(ab-ac-bc\right)\)
Ta có; \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{a^2+c^2-c^2+\left(a-c\right)^2}{b^2+c^2-c^2+\left(b-c\right)^2}=\frac{a^2+c^2+2\left(ab-ac-bc\right)+\left(a-c\right)^2}{b^2+c^2+2\left(ab-ac-bc\right)+\left(b-c\right)^2}\)
\(=\frac{2\left(a-c\right)^2+2\left(ab-bc\right)}{2\left(b-c\right)^2+2\left(ab-ac\right)}=\frac{2\left(a-c\right)^2+2b\left(a-c\right)}{2\left(b-c\right)^2+2a\left(b-c\right)}=\frac{\left(a-c\right)\left(a-c+b\right)}{\left(b-c\right)\left(b-c+a\right)}\)
\(=\frac{a-c}{b-c}\) (đpcm)
\(a^2+b^2+c^2=ab+ac+bc\)
=> \(2a^2+2b^2+2c^2=2ab+2ac+2bc\)
=> \(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
=> \(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
=> \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
Vì \(\left(a-b\right)^2\ge0\) với mọi a, b ; \(\left(a-c\right)^2\ge0\) với mọi a, c ; \(\left(b-c\right)^2\ge0\) với mọi b, c.
Do đó \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\) khi \(a-b=a-c=b-c=0\), suy ra a = b = c
\(a^2+b^2+c^2=ab+ac+bc\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+ac+bc\right)\)
\(\Rightarrow a^2+a^2+b^2+b^2+c^2+c^2-2ab-2ac-2bc=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\)
\(\left(a-c\right)^2\ge0\forall a,c\)
\(\left(b-c\right)^2\ge0\forall b,c\)
Do đó \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\forall a,b,c\)
Dấu "=" xảy ra \(\Leftrightarrow a=b,a=c,b=c\)
\(\Rightarrow a=b=c\)