K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2017

B1 a, a^3 - a = a.(a^2-1) = (a-1).a.(a+1) chia hết cho 3 

b, a^7-a = a.(a^6-1) = a.(a^3-1).(a^3+1)

Ta thấy số lập phương khi chia 7 dư 0 hoặc 1 hoặc 6

+Nếu a^3 chia hết cho 7 => a^7-a chia hết cho 7

+Nếu a^3 chia 7 dư 1 thì a^3-1 chia hết cho 7 => a^7-a chia hết cho 7

+Nếu a^3 chia 7 dư 6 => a^3+1 chia hết cho 7 => a^7-a chia hết cho 7

Vậy a^7-a chia hết cho 7

10 tháng 11 2017

b,  a^7-a=a(a^6-1) 
=a(a^3+1)(a^3-1) 
=a(a+1)(a^2-a+1)(a-1)(a^2+a+1) 
=a(a-1)(a+1)(a^2-a+1)(a^2+a+1) 
=a(a-1) (a+1) (a^2-a+1-7) (a^2+a+1) 
+7a (a-1) (a+1) (a^2+a-1) 
=a (a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
+7a (a-1) (a+1) (a^2+a-1) 
+7a (a-1) (a+1) (a^2-a-6) 
có: 7a(a-1) (a+1) (a^2+a-1)+7a (a-1) (a+1) (a^2-a-6) chia hết cho 7 (cùng có nhân tử 7) 
ta cần chứng minh: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) chia hết cho 7 
thật vậy: a(a-1) (a+1) (a^2-a-6) (a^2+a+1-7) 
=a(a-1) (a+1) [(a+2)(a-3)] [(a-2)(a+3)] 
=(a-3) (a-2) (a-1) a (a+1) (a+2) (a+3) là tích của 7 số nguyên liên tiếp nên chia hết cho 7. 
trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7,1 số dư 1,1 số dư 2,....và 1 số dư 6 khi chia cho 7 

15 tháng 1 2018

Bài 1:

Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y 

Vì 6x+11y chia hết cho 31, 31y chia hết cho 31

=> 6(x+7y) chia hết cho 31

Mà (6;31)=1 => x+7y chia hết cho 31

Bài 3:

a,n2+3n-13 chia hết cho n+3

=>n(n+3)-13 chia hết cho n+3

=>13 chia hết cho n+3

=>n+3 E Ư(13)={1;-1;13;-13}

=>n E {-2;-4;10;-16}

d,n2+3 chia hết cho n-1

=>n2-n+n-1+4 chia hết cho n-1

=>n(n-1)+(n-1)+4 chia hết cho n-1

=>4 chia hết cho n-1

=>n-1 E Ư(4)={1;-1;2;-2;4;-4}

=>n E {2;0;3;-1;5;-3}

21 tháng 1 2016

a, mk quên cách làm

b,ab+ba=11a+11b=11(a+b) chia hết cho 11

21 tháng 1 2016

Phùng Gia Bảo câu b xem người ta giải trong câu hỏi tương tự chứ j

2 tháng 9 2020

a) Gọi ƯCLN(a ; b) = d

=> \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮d\\b^2⋮d\end{cases}}\Rightarrow a^2+b^2⋮d\)

mà theo đề ra \(a^2+b^2⋮3\)

=> \(d⋮3\)

Mà \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\)

b) Gọi ƯCLN(a ; b) = d

=> \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮d\\b^2⋮d\end{cases}}\Rightarrow a^2+b^2⋮d\)

mà theo đề ra \(a^2+b^2⋮7\)

=> \(d⋮7\)

Mà \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a⋮7\\b⋮7\end{cases}}\)

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6