K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2017

https://cunghoctot.vn/Forum/Topic/1002821

bạn cứ vào táp này là có lời giải

3 tháng 11 2017

Ta có nếu a không là bội của 7 thì a không chia hết cho 7 với mọi a là số nguyên lớn hơn 0

Mà a không chia hết cho 7 tức là a chia cho 7 dư 1, 2, 3, 4, 5 hoặc 6

Vì vậy a^6 chia cho 7 sẽ dư 1^6, 2^6, 3^6, 4^6, 5^6 hoặc 6^6

Vậy nếu 1^6 - 1, 2^6 - 1, 3^6 - 1, 4^6 - 1, 5^6 - 1, 6^6 - 1 chia hết cho 7 thì a^6 - 1 chia hết cho 7

Thật vậy :

- 1^6 - 1 = 1 - 1 = 0 chia hết cho 7

- 2^6 - 1 = 64 - 1 = 63 chia hết cho 7

- 3^6 - 1 = 729 - 1 = 728 chia hết cho 7

- 4^6 - 1 = 4096 - 1 = 4095 chia hết cho 7

- 5^6 - 1 = 15625 - 1 = 15624 chia hết cho 7

- 6^6 - 1 = 46656 - 1 = 46655 chia hết cho 7

Vậy a^6 - 1 chia hết cho 7 với mọi x thuộc số nguyên lớn hơn 0 không chia hết cho 7

27 tháng 8 2017

Gọi 1/4 số a là 0,25 . Ta có :

                   a . 3 - a . 0,25 = 147,07

                   a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )

                      a . 2,75 = 147,07

                         a = 147,07 : 2,75

                          a = 53,48

mình nha

12 tháng 10 2021

a/ \(2^{n+3}-32=2^3.2^n-32=8\left(2^4-4\right)⋮8\)

b/ \(\left(3^8+3^7\right)-\left(2^8+2^7\right)=3^7\left(3+1\right)-2^7\left(2+1\right)=\)

\(=2^2.3^7-2^7.3=2^2.3\left(3^6-2^5\right)=12\left(3^6-2^5\right)⋮12\)

19 tháng 7 2017

3n + 3 + 3n + 1 + 2n + 3 + 2n + 2

= 3n.33 + 3n.3 + 2n.23 + 2n.22

= 3n.(27 + 3) + 2n.(8 + 4)

= 3n.30 + 2n.12

= 3n.5.6 + 2n.2.6

= 6.(3n.5 + 2n.2)  \(⋮\)  6

19 tháng 7 2017

Cảm ơn bạn kayasari nhiều nha !

17 tháng 11 2019

Bài 1: 5a+7b chia hết cho 13

=> 35a+49b chia hết cho 13

=> 5(7a+2b)+39b chia hết cho 13

Do 39b chia hết cho 13

=> 5(7a+2b) chia hết cho 13

Mà 5 vs 13 là 2 số nguyên tố cùng nhau

=> 7a+2b chia hết cho 13. (đpcm)

Bài 2:

Xét n=3 thì 1!+2!+3!=9-là SCP (chọn)

Xét n=4 thì 1!+2!+3!+4!=33 ko là SCP (loại)

Nếu n>=5 thì n! sẽ có tận cùng là 0 

=> 1!+2!+3!+4!+....+n! vs n>=5 thì sẽ có tận cùng là 3 do 1!+2!+3!+4! tận cùng =3

Mà 1 số chính phương ko thể chia 5 dư 3 (1 SỐ CHÍNH PHƯƠNG CHIA 5 DƯ 0;1;4- tính chất)

=> Với mọi n>=5 đều loại

vậy n=3. 

Bài 3:

Do 26^3 có 2 chữ số tận cùng là 76

26^5 có 2 chữ số tận cùng là 76

26^7 có 2 chữ sốtận cùng là 76

Vậy ta suy ra là 26 mũ lẻ sẽ tận cùng =76

Vậy 26^2019 có 2 chữ số tận cùng là 76.

15 tháng 2 2019

Vì a,b là các số nguyên dương nên:

\(4^a\equiv1\left(mod3\right)\)

\(\Rightarrow4^a+2\equiv0\left(mod3\right)\)

Mà \(4^a+2\equiv0\left(mod2\right)\)

\(\Rightarrow4^a+2\equiv0\left(mod6\right)\) vì \(\left(2;3\right)=1\)

Ta có:\(4^a+a+b=\left(4^a+2\right)+\left(a+1\right)+\left(b+2007\right)-2010⋮6\)

Vậy \(4^a+a+b⋮6\)

16 tháng 2 2019

lm lại (đầy đủ hơn) haizz

\(4\equiv1\left(\text{mod 3}\right)\Rightarrow4^a\equiv1^a\left(\text{mod 3}\right)\Rightarrow4^a\equiv1\left(\text{mod 3}\right)\)

\(4^a+a+b=4^a+a+1+b+2006-2007\)

vì a+1 và a+2007 chia hết cho 6=>a+b+2008 chia hết cho 3=>a+b+2007 chia 3 dư 2=>4^a+a+b chia hết cho 3 và 2007 chia hết cho 3=>4^a+a+b chia hết cho 3

a+1 và b+2007 chia hết cho 6=>a+1 chia hết cho 2=>a lẻ và  b lẻ

4^a+a+b chẵn=>4^a+a+b chia hết cho 2=> 4^a+a+b chia hết cho 2.3 hay chia hết cho 6

Vậy: 4^a+a+b chia hết cho 6 (đpcm)

2 tháng 9 2020

a) Gọi ƯCLN(a ; b) = d

=> \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮d\\b^2⋮d\end{cases}}\Rightarrow a^2+b^2⋮d\)

mà theo đề ra \(a^2+b^2⋮3\)

=> \(d⋮3\)

Mà \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\)

b) Gọi ƯCLN(a ; b) = d

=> \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮d\\b^2⋮d\end{cases}}\Rightarrow a^2+b^2⋮d\)

mà theo đề ra \(a^2+b^2⋮7\)

=> \(d⋮7\)

Mà \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a⋮7\\b⋮7\end{cases}}\)

19 tháng 6 2016

Câu 1 : (Bạn thông cảm hơi mờ chút bucminh)

Hỏi đáp Toán

  \(=-301.\left[1+\left(-7\right)^4+\left(-7\right)^7+...+\left(-7\right)^{2005}\right]\)

  \(=43.\left(-7\right).\left[1+\left(-7\right)^4+\left(-7\right)^7+...+\left(-7\right)^{2005}\right]\) chia hết cho 43

19 tháng 6 2016

Câu 3 :

*Điều kiện đủ :

Nếu m và n chia hết cho 3 thì m2 ;n2 và mn chia hết cho 3 do đó m2 + mn + n2 chia hết cho 9

*Điều kiện cần :

Ta có :\(m^2+mn+n^2=\left(m-n\right)^2+3mn\) (*)

Nếu m2 + mn + n2 chia hết cho 9 thì từ (*) ta suy ra (m - n)2 chia hết cho 3 <=> (m - n) chia hết cho 3 (1)

Mà (m - n)2 chia hết cho 9 và 3mn chia hết cho 9  => mn chia hết cho 3 => m hoặc n chia hết cho 3 (2)

Từ (1) và (2) => cả 2 số m,n đều chia hết cho 3