\(\sq...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2018

Do hai tam giác có độ dài 3 cạnh là a,b,c và a',b',c' nên ta có tỷ lệ sau 

\(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}\)

Đặt \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=k\) \(\Rightarrow\hept{\begin{cases}a=k.a'\\b=k.b'\\c=k.c'\end{cases}}\)

Ta có : \(\sqrt{aa'}+\sqrt{bb'}+\sqrt{cc'}=\sqrt{ka'.a'}+\sqrt{kb'.b'}+\sqrt{kc'.c'}\)

                                                   \(=a'.\sqrt{k}+b'.\sqrt{k}+c'.\sqrt{k}=\sqrt{k}.\left(a'+b'+c'\right)\)

Ta lại có : \(\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}=\sqrt{k.\left(a'+b'+c'\right)\left(a'+b'+c'\right)}=\sqrt{k}.\left(a'+b'+c'\right)\)

Vậy ...... 

23 tháng 7 2019
https://i.imgur.com/bOWU2JS.jpg
23 tháng 7 2019

thanks

19 tháng 2 2020

gt \(\Rightarrow\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=\frac{a+b+c}{a'+b'+c'}=k\) \(\Rightarrow\left\{{}\begin{matrix}a=ka'\\b=kb'\\c=kc'\\a+b+c=k\left(a'+b'+c'\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}aa'=ka'^2\\bb'=kb'^2\\cc'=kc'^2\\\left(a+b+c\right)\left(a'+b'+c'\right)=k\left(a'+b'+c'\right)^2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{aa'}+\sqrt{bb'}+\sqrt{cc'}=\sqrt{k}\left(a'+b'+c'\right)\\\sqrt{\left(a+b+c\right)\left(a'+b'+c'\right)}=\sqrt{k}\left(a'+b'+c'\right)\end{matrix}\right.\) => đpcm

20 tháng 6 2016

bạn ơi giúp mình với C/M: (ax^2 - bx^2)^4 + (2ab+bx^2)^4 + (2ab+a^2)^4 = 2(a^2+ab+b^2)

1 tháng 8 2016

sửa đề lại bạn nhé =) \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}\)

đặt \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}=k\Rightarrow\hept{\begin{cases}a=kA\\b=kB\end{cases}va\hept{\begin{cases}c=kC\\d=kD\end{cases}}}\)

theo đề bài ta có \(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{kA^2}+\sqrt{kB^2}+\sqrt{kC^2}+\sqrt{kD^2}\)

=\(\sqrt{k}\left(A+B+C+D\right)\left(1\right)\)

ta lại có \(\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}=\sqrt{\left(kA+kB+kC+kD\right)\left(A+B+C+D\right)}\)

=\(\sqrt{k\left(A+B+C+D\right)\left(A+B+C+D\right)}=\sqrt{k\left(A+B+C+D\right)^2}=\sqrt{k}\left(A+B+C+D\right)\left(2\right)\)

(1),(2)=> \(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)

31 tháng 7 2016

gt thiếu kìa.