K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2020

bài 1 sai đề ko bạn

16 tháng 1 2020

đề nào và mình ghi sai thứ tự bài

16 tháng 6 2016

1, 

\(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)

<=> (a - 2)(b + 3) = (a + 2)(b - 3)

<=> ab + 3a - 2b - 6 = ab - 3a + 2b - 6

<=> 3a - 2b = -3a + 2b

<=> 6a = 4b

<=> 3a = 2b 

<=> \(\frac{a}{2}=\frac{b}{3}\)(Đpcm)

16 tháng 6 2016

2,

Có:

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(=\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}\)

\(=\frac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}=0\)

=> bz - cy = 0

=> bz = cy

=> \(\frac{b}{y}=\frac{c}{z}\)(1)

=> cx - az = 0

=> cx = az

=> \(\frac{c}{z}=\frac{a}{x}\)(2)

Từ (1) và (2)

=> \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)(Đpcm)

27 tháng 8 2016

a/ Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c};c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=k^3\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)

Áp dụng tính chất của tỉ lệ thức ta có:\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=k^3\)

Mặt khác: \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\frac{a+b+c}{b+c+d}=k\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=k^3\)

\(\Rightarrow\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\frac{a+b+c}{b+c+d}\right)^3\left(=k^3\right)\)

27 tháng 8 2016

giup minh nha: Tinh nhanh lop 4

42 x 43 - 12 x 9 - 42 x 3

10 tháng 5 2018

Áp dụng tính chất dãy tỉ số bằng nhau; ta được:

\(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+bc}{4}=\frac{ab+ac+bc+ba-\left(ca+bc\right)}{2+3-4}=\frac{2ab}{1}\)

Tương tự; ta được: \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+bc}{4}=\frac{bc+ba+ca+bc-\left(ab+ac\right)}{3+4-2}=\frac{2bc}{5}\)

\(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}=\frac{ab+ac-\left(bc+ba\right)+ca+cb}{2-3+4}=\frac{2ac}{3}\)

Từ các điều trên; ta được:

\(\frac{2ac}{3}=\frac{2ab}{1}=\frac{2bc}{5}\)

\(\Rightarrow\frac{10ac}{15}=\frac{30ab}{15}=\frac{6bc}{15}\)

\(\Rightarrow10ac=30ab=6bc\)

\(\Rightarrow10ac=30ab\Rightarrow b=\frac{c}{3}\Rightarrow\frac{b}{5}=\frac{c}{15}\left(1\right)\)

\(30ab=6bc\Rightarrow5a=c\Rightarrow a=\frac{c}{5}\Rightarrow\frac{a}{3}=\frac{c}{15}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\left(ĐPCM\right)\)

10 tháng 5 2018

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+bc}{4}=\frac{ab+ac+bc+ba-\left(ca+bc\right)}{2+3-4}=\frac{2ab}{1}\)

4 tháng 12 2019

Ta có a/b =b/c 

=> a^2/b^2=a/b.a/b= a/b.b/c=a/c(1)

Lại có a/b=b/c

=> a^2/b^2=b^2/c^2=a^2+b^2  /  b^2+c^2 (t/c dãy tỉ số = nhau) (2)

Từ (1),(2) => a/c=a^2+b^2  /  b^2+c^2

4 tháng 12 2019

Ta có \(\frac{a}{b}=\frac{b}{c}\)=> \(\left(\frac{a}{b}\right)^2=\left(\frac{b}{c}\right)^2\)

                             => \(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)mà \(\frac{a}{b}=\frac{b}{c}\)
                            => \(\frac{a^2+b^2}{b^2+c^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}\)